COVER PAGE

Document Date: July 14, 2008

1198010003

08-38383

CHEMETCO 19C – SF/Tech

VOLUME 4

CONTENTS:
Exhibit 8

THIS PAGE FOR IMAGING PURPOSES ONLY (REMOVE AFTER IMAGING)

EXHIBIT 8 PUBLIC VERSION

RELEASABLE
MAY 18 2011
REVIEWER CAD

FILE NO. L / / 9 8 0 / 0 0 0 3

EXEMPT DOCUMENT NO. 1 3 3

THE AGENCY HAS DETERMINED THIS DOCUMENT IS EXEMPT IN PART FROM PUBLIC DISCLOSURE

EXEMPT IN PART DOCUMENT

FILE CATEGORY SF/TECH

DOCUMENT DATE 07-14-2008

- AS INDICATED ON INDIVIDUAL PAGES PUBLIC RECORD CLAIMED EXEMPT - IN PART

Bridgeport Brass, Indianapolis, Indiana Materials Chemetco Purchased From

Metal Code	Metal Code Shipped Date	Pounds	Description	CDA Number	Chemical Content
1100					
	4/17/2000	348	Alloy 110 W/Free fron	C11000 with Iron	See Tab C11000
	Total Pounds:	ds: 348			
1201					
	1/30/1998	3,650	Furnace Spill	C12000	See Tab C12000
	Total Pounds:	ds; 3,650			
1220					
	1/27/1998	1,824	Furnace Spill	C12200	See Tab C12200
	Total Pounds:	ds: 1,824			
1451					
	1/22/1998	15,096	1 Fumace Stug	C14510	See Tab C14510
	11/24/1998	11,118	1 Alloy 1451 Furnace Spill	C14510	See Tab C14510
	11/24/1998	7.940	1 Alloy 1451 Furnace Slug	C14510	See Tab C14510
	12/16/1998	11,852	1 Box and 1 Spill	C14510	See Tab C14510
	1/20/1999	33,184	11 Boxes of Mill Scrap	C14510	See Tab C14510
	1/20/1999	33,440	Mill Scrap	C14510	See Tab C14510
	5/19/1999	8	2000 Series Furnace Screenings	C14510	See Tab C14510
* Breakdown provided by ? Monday, July 14, 2008	* Breakdown provided by Mike Housson. GBC Metals, LLC. Monday, July 14, 2008	BC Metab, LLC.		BIOKEN	Page 1 of 47

Monday, July 14, 2008

ON MENTER IND

MAY 18 2011

Chemical Content

CDA Number

Description

Pounds

Metal Code Shipped Date

Total Pounds:

See Tab C14500

C14500 Off Analysis C14500 Off Analysis C14500 Off Analysis C14500 Off Analysis

See Tab C14500

See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500
See Tab C14500

C14500 Off Analysis C14500 Off Analysis C14500 Off Analysis

C14500 Off Analysis

O.A. Scrap Cuts
O.A. Scrap Cuts
O.A. Scrap Cuts
O.A. Scrap Cuts

O.A. Cake Cuts O.A. 1450 Cuts O.A. 1450 Cuts

38.630 8,278 13,808 8,576 33,772 26,598 6,168

8/13/1997 12/12/1997 12/18/1997 12/18/1997 12/18/1997

145 Billet Cuts

16,048

4/19/1996

1458

C14500 Off Analysis C14500 Off Analysis C14500 Off Analysis C14500 Off Analysis C14500 Off Analysis

O.A. Scrap Cuts
O.A. Scrap Cuts
O.A. Scrap Cuts
O.A. Scrap Cuts

12/22/1997 12/22/1997 12/23/1997 12/29/1997 12/29/1998

836 21,662 3,936 13,080 C14500 Off Analysis C14500 Off Analysis

O A 145 Billet Cuts

7,404

Furnace Spill O.A. 145 Cuts O.A. 145 Cuts

C14500 Off Analysis C14500 Off Analysis

O.A. Scrap Cuts

2,324 15,596 8,344

> 3/18/1998 3/19/1998 12/16/1998

See Tab C14500		See Tab C19400	See Tabs C19400, C36000 and C51000	
C14500 Off Analysis		C19400 Tin Coated	C19400 + C36000 + C51000 Mixed	
Spill		Tinned 1940 Scrap	Mixed Bales (194/350/510)	
4,272	229,836	100	4,534	4,634
1/20/1999	Total Pounds:	11/21/1998	11/21/1998	Total Pounds:
		1940		

^{*} Breakdown provided by Mike Houston, GBC Metals, LLC.

Monday, July 14, 2008

Page 2 of 47

retat Come	out bear madding	*			
2100					
	6/21/2000	15,370	Alloy 210 Furnace Spill	C21000	See Tab C21000
	Total Pounds:	15,370			
2108					
	11/21/1998	17,398	2100 Cake Cuts W/.102 Te	C21000 with Tellurium	See Tab C21000
	12/16/1998	1,678	1 Spill	C21000 Off Analysis	See Tab C21000
	8/31/1999	37,816	5 Boxes OA 210 Cake Cuts	C21000 Off Analysis	See Tab C21000
	8/9/1999	8,338	2 Boxes OA 210 Cake Cuts	C21000 Off Analysis	See Tab C21000
	9/14/1999	11,570	OA 210 Cake Cuts	C21000 Off Analysis	See Tab C21000
	11/14/2000	350	Spill W/ FE	C21000 with Iron	See Tab C21000
	12/28/2000	14,360	O.A. Cuts W// .17 SN & .3 SI	C21000 Off Analysis	See Tab C21000
	1/8/2001	9,120	O.A. Cuts (1.75 SN; 65 SI)	C21000 Off Analysis	See Tab C21000
	3/12/2001	8,652	Alloy 210 Coit W/ .074 Ti	C21000 Off Analysis	See Tab C21000
	3/14/2001	1,226	Slug W/FE	C21000 with Iron	See Tab C21000
	Total Pounds:	110,508			
2200					
	12/16/1998	2,274	1 Spill	C22000	See Tab C22000
	11/17/1999	9,700	OA 220 Cake Cuts	C22000 Off Analysis	See Tab C22000
	Total Pounds:	11,974			
2204					
	7/12/2000	13,280	Spill	C22000	See Tab C22000
	Total Pounds:	13,280			
2208					•
	9/28/2000	21,002	O.A. Cake Cuts W/ 1.58% FE	C22000 with Iron	See Tab C22000

star Coae	Meice Cone Dubben Date 1	VIERUS	nescribani		Chemical Common
	12/28/2000	16,728	D.A. Cuts W/, 15 FE	C22000 with Iron	See Tab C22000
	1/8/2001	6,626	O.A. Cuts (.15 FE)	C22000 with Iron	See Tab C22000
	1/31/2001	6,326	O.A. Cuts W/.696 FE	C22000 with Iron	See Tab C22000
	2/1/2001	7,894	1 Spill W/FE	C22000 with fron	See Tab C22000
	3/14/2001	6,646	Slug W/FE	C22000 with Iron	See Tab C22000
	5/21/2001	8,484	O.A. Cuts W/, 889 FE	C22000 with Iron	See Tab C22000
	5/22/2001	10,712	O.A. Cuts W/.889 FE	C22000 with Iron	See Tab C22000
	Total Pounds:	84,418			
2300					
	3/20/1998	3,308	1 Furnace Spill	C23000	See Tab C23000
	Total Pounds:	3,308			
2308					
	9/28/2000	7,574	O.A. Cake Cuts W/ 1.05% FE	C23000 with Iron	See Tab C23000
	9/29/2000	6,056	O.A. Cake Cuts W/ 1.05% FE	C23000 with fron	See Tab C23000
	Total Pounds:	13,630			
2400					·
	5/19/1999	8,316		C24000	See Tab C24000
	Total Pounds:	8,316			
2600					
	4/8/1998	33,260	Source Document is Casting Receipts & Shipments by Content printout for 4/8/1998; no invoice available	C25000	See Tab C26000
	10/8/1998	42,570	Source Document is Casting Receipts & Shipments by Content printout for 10/8/1998; no invoice available	C25000	See Tab C26000
	12/16/1998	960'9	1 Spill	C26000	See Tab C26000

* Breatdown provided by Mike Houston, GBC Metals, LLC.

	9/10/1999	2,902	1 Fumace Spill	C25000	See Tab C26000
	Total Pounds:	84,828			
2608					
	3/20/1998	10,636	1 Fumace Spill	C26000 Off Analysis	See Tab C26000
	5/19/1999	3,850		C26000 Off Analysis	See Tab C26000
	5/19/1999	5,464		C26000 Off Analysis	See Tab C26000
	8/9/1998	11,062	4 Spills	C26000 Off Analysis	See Tab C26000
	10/20/1999	5,214	Fumace Spill	C26000 Off Analysis	See Tab C26000
	2/22/2000	1,948	2 Furnace Spills W/FE - Alloy 260	C26000 with Iron	See Tab C26000
	7/12/2000	1,406	Hids	C26000 Off Analysis	See Tab C26000
	11/14/2000	322	Spill W/ FE	C26000 with Iron	See Tab C26000
	12/8/2000	1,278	Spill W/ FE	C26000 with Iron	See Tab C26000
	1/15/2001	20,044	Spills	C26000 Off Analysis	See Tab C26000
	2/1/2001	15,902	3 Spills W/FE	C26000 with Iron	See Tab C26000
	3/12/2001	856	Funace Spill W/ FE	C26000 with Iron	See Tab C26000
	3/14/2001	474	Slug W/FE	C26000 with Iron	See Tab C26000
	5/21/2001	4,204	Spill W/FE	C26000 with Iron	See Tab C26000
	Total Pounds:	82,660			
3140					
	1/27/1998	1,336	Furnace Spill	C31400	See Tab C31400
	8/25/1999	3,370	1 Box Alloy 314 Mill Scrap	C31400	See Tab C31400
	8/31/1999	714	2 Boxes Alloy 314 Mill Scrap	C31400	See Tab C31400
	Total Pounds:	5,420			
3148					
	12/19/1997	4,814	O.A. Scrap Cuts	C31400 Off Analysis	See Tab C31400

^{*} Breakdown provided by Mike Housion, GBC Metals, LLC.

1,202/1997 1,3659 O.A. Scrap Cuts C.31400 Of Analysis See Tab C.31400 Founds: 1,2621/1997 1,3659 O.A. Scrap Cuts C.31400 Of Analysis See Tab C.31400	Metal Code	Metal Code Shipped Date	Pounds	Description	CDA Number	Chemical Content
12023/1997 3,854 O.A. Scrap Cuts C31400 Off Analysis Total Pounds: 22,435 22 Boxes Alloy 3300 Mill Scrap C33000 8/19/1999 2,990 4 Boxes Alloy 3300 Mill Scrap C33000 7 Total Pounds: 10,878 7 Boxes Alloy 3320 Mill Scrap C33200 7 Total Pounds: 10,878 7 Boxes Alloy 3350 Mill Scrap C33200 7 Total Pounds: 6,058 5 Boxes Alloy 344 Mill Scrap C34500 7 Total Pounds: 2,552 2 Boxes Alloy 345 Mill Scrap C34500 7 Total Pounds: 1,272 1 Furnace Spill C34500 9/25/1999 1,272 1 Furnace Spill C34500 10/4/1999 1,372 1 Furnace Spill C34500 10/4/1999 1,372 1 Furnace Spill Carls C34500 10/4/1999 1,373 1 Furnace Spill Carls C34500 10/4/1999 1,373 1 Say Bilet Carls C34500		12/22/1997	13,668	O.A. Scrap Cuts	C31400 Off Analysis	See Tab C31400
Fotal Pounds: 22.438 8/13/1999 27,728 22 Boxes Alloy 3300 Mill Scrap C33000 8/23/1999 2,990 4 Boxes Alloy 3300 Mill Scrap C33000 8/23/1999 10,878 7 Boxes Alloy 3320 Mill Scrap C33200 7 otal Pounds: 6,058 5 Boxes Alloy 335 Mill Scrap C33500 7 otal Pounds: 6,058 5 Boxes Alloy 344 Mill Scrap C34400 8/25/1999 2,552 2 Boxes Alloy 345 Mill Scrap C34500 7 otal Pounds: 1,272 1 Fumace Spill C34500 9/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 7 otal Pounds: 1,572 1 Fumace Spill C34500 10/4/1999 1,590 Excess Mill Scrap C34500 7 otal Pounds: 1,590 Excess Mill Scrap C34500		12/23/1997	3,954	O.A. Scrap Cuts	C31400 Off Analysis	See Tab C31400
8/19/1999 27,728 2.2 Boxes Alloy 3300 Mill Scrap C33000 8/23/1999 2,990 4 Boxes Alloy 3300 Mill Scrap C33000 701al Pounds: 10,878 7 Boxes Alloy 3320 Mill Scrap C33200 701al Pounds: 10,878 5 Boxes Alloy 335 Mill Scrap C33500 701al Pounds: 6,058 5 Boxes Alloy 344 Mill Scrap C34400 8/25/1999 2,552 2 Boxes Alloy 345 Mill Scrap C34500 701al Pounds: 2,552 1 Funnace Spill C34500 8/25/1999 1,272 1 Funnace Spill C34500 104/1999 1,390 Excess Mill Scrap C34500 104/1999 1,890 Excess Mill Scrap C34500 104/1999 1,890 Excess Mill Scrap C34500 104/1999 13.33 Billet Cuts C35300 CH Analysis		Total Pounds:				
8/12/1999 27,728 22 Boxes Alloy 3300 Mill Scrap C33000 8/23/1999 2,990 4 Boxes Alloy 3300 Mill Scrap C33000 701al Pounds: 10,878 7 Boxes Alloy 3320 Mill Scrap C33500 701al Pounds: 6,058 5 Boxes Alloy 335 Mill Scrap C33500 701al Pounds: 6,058 5 Boxes Alloy 344 Mill Scrap C34400 8/25/1999 2,552 2 Boxes Alloy 345 Mill Scrap C34500 701al Pounds: 2,552 2 Boxes Alloy 345 Mill Scrap C34500 8/25/1999 1,272 1 Furnace Spill C34500 104/1999 1,372 1 Furnace Spill C34500 104/1999 1,372 1 Furnace Spill C34500 104/1999 1,390 Excess Mill Scrap C34500 104/1999 13,390 Excess Mill Scrap C34500	3300					
8/23/1999 2,990 4 Boxess Alloy 3300 Mill Scrap C33000 Total Pounds: 10,878 7 Boxes Alloy 3320 Mill Scrap C33200 Total Pounds: 6,058 6 Boxes Alloy 335 Mill Scrap C33500 Total Pounds: 6,058 2 Boxes Alloy 344 Mill Scrap C33500 Total Pounds: 2,552 2 Boxes Alloy 344 Mill Scrap C34400 3/20/1998 1,272 1 Funnace Spill C34500 10/4/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 Total Pounds: 1,280 Excess Mill Scrap C34500 Total Pounds: 13,130 Excess Mill Scrap C34500 Total Pounds: 13,130 Excess Mill Scrap C3500 Off Analysis		8/19/1999	27,728	22 Boxes Alloy 3300 Mill Scrap	C33000	See Tab C33000
Total Pounds: 30,718 7 Boxes Alloy 3320 Mill Scrap C33200 8/23/1999 10,878 7 Boxes Alloy 3320 Mill Scrap C33500 7 total Pounds: 6,058 5 Boxes Alloy 335 Mill Scrap C33500 8/25/1999 2,552 2 Boxes Alloy 344 Mill Scrap C34400 7 total Pounds: 1,272 1 Furnace Spill C34500 8/25/1999 1,272 1 Furnace Spill C34500 10/4/1999 1,590 Excess Mill Scrap C34500 Total Pounds: 13,130 Excess Mill Scrap C33500 Off Analysis		8/23/1999	2,990	4 Boxes Alloy 3300 Mill Scrap	C33000	See Tab C33000
8/23/1999 10,878 7 Boxes Alloy 3320 Mill Scrap CG33200 Total Pounds: 10,878 5 Boxes Alloy 335 Mill Scrap CG3500 Total Pounds: 6,058 5 Boxes Alloy 344 Mill Scrap CG3400 8/25/1999 2,552 2 Boxes Alloy 344 Mill Scrap CG3400 70tal Pounds: 2,552 2 Boxes Alloy 345 Mill Scrap CG34500 8/25/1999 1,272 1 Furnace Spill CG34500 8/25/1999 1,0168 7 Boxes Alloy 345 Mill Scrap CG34500 10/4/1999 1,690 Excess Mill Scrap CG34500 70ial Pounds: 13,130 CG35300 CH Analysis		Total Pounds:				
8/23/1999 10,878 7 Boxes Alloy 3320 Mill Scrap C33200 Total Pounds: 6,058 5 Boxes Alloy 335 Mill Scrap C33500 R/25/1999 2,552 2 Boxes Alloy 344 Mill Scrap C34400 Total Pounds: 2,552 2 Boxes Alloy 345 Mill Scrap C34500 8/25/1999 1,272 1 Furnace Spiil C34500 8/25/1999 1,272 1 Furnace Spiil C34500 10/4/1999 1,272 1 Furnace Spiil C34500 10/4/1999 1,272 1 Furnace Spiil C34500 10/4/1999 1,273 1 Furnace Spiil C34500 10/4/1999 1,590 Excess Mill Scrap C34500 Total Pounds: 13,130 Excess Mill Scrap C35300 Off Analysis	3320					
Total Pounds: 10,878 5 Boxes Alloy 335 Mill Scrap C33500 4/25/1999 6,058 5 Boxes Alloy 344 Mill Scrap C34400 Total Pounds: 2,552 2 Boxes Alloy 345 Mill Scrap C34400 Total Pounds: 1,272 1 Furnace Spill C34500 8/25/1999 1,272 1 Furnace Spill C34500 10/4/1999 1,590 Excess Mill Scrap C34500 Total Pounds: 13,130 Excess Mill Scrap C35300 CH Analysis		8/23/1999	10,878	7 Boxes Alloy 3320 Mill Scrap	C33200	See Tab C33200
4/25/1999 6,058 5 Boxes Alloy 335 Mill Scrap C33500 Total Pounds: 6,058 2,552 2 Boxes Alloy 344 Mill Scrap C34400 3/20/1999 1,272 1 Furnace Spill C34500 8/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 104/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 C353 Billet Cuts C35300 Off Analysis		Total Pounds:				
8/25/1999 6,058 5 Boxes Alloy 335 Mill Scrap C33500 Total Pounds: 6,058 2 Boxes Alloy 344 Mill Scrap C34400 Total Pounds: 2,552 2 Boxes Alloy 345 Mill Scrap C34500 3/20/1998 1,272 1 Furnace Spill C34500 8/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,590 Excess Mill Scrap C34500 Total Pounds: 13,130 Excess Mill Scrap C34500 4/19/1996 12,574 353 Billet Cuts C35300 Off Analysis	3350					
Total Pounds: 6,058 2,552 2 Boxes Alloy 344 Mill Scrap C34400 Total Pounds: 2,552 2 Boxes Alloy 344 Mill Scrap C34500 3/20/1998 1,272 1 Funace Spill C34500 8/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 C35300 Off Analysis		8/25/1999	6,058	5 Boxes Alloy 335 Mill Scrap	C33500	See Tab C33500
8/25/1999 2,552 2 Boxes Alloy 344 Mill Scrap C34400 Total Pounds: 2,552 1 Furnace Spill C34500 3/20/1998 1,272 1 Furnace Spill C34500 6/25/1999 10,468 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,590 Excess Mill Scrap C34500 Total Pounds: 13,130 C35300 Off Analysis		Total Pounds:				
8/25/1999 2,552 2 Boxes Alloy 344 Mill Scrap C34400 Total Pounds: 2,552 1 Eurnace Spill C34500 8/25/1998 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 A/19/1996 12,874 353 Billet Cuts	3440					
Total Pounds: 2,552 3/20/1998 1,272 1 Furnace Spill C34500 8/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 C35300 Off Analysis		8/25/1999	2,552	2 Boxes Alloy 344 Mill Scrap	C34400	62.0 - 86.0% Cu/.50 - 1.0% Pb/.10% Fe/Remainder Zn
3/20/1998 1,272 1 Furnace Spill C34500 8/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,690 Excess Mill Scrap C34500 7otal Pounds: 13,130 C35300 Off Analysis		Total Pounds:				
3/20/1998 1,272 1 Furnace Spiti C34500 8/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 C35300 Off Analysis	3450					
6/25/1999 10,168 7 Boxes Alloy 345 Mill Scrap C34500 10/4/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 13,130 4/19/1996 12,674 353 Billet Cuts C35300 Off Analysis		3/20/1998	1,272	1 Furnace Spill	C34500	See Tab C34500
10/4/1999 1,690 Excess Mill Scrap C34500 Total Pounds: 13,130 13,130 4/19/1996 12,674 353 Billet Cuts C35300 Off Analysis		8/25/1999	10,168	7 Boxes Alloy 345 Mill Scrap	C34500	See Tab C34500
Total Pounds: 13.130 4/19/1996 12,674 353 Billet Cuts		10/4/1999	1.690	Excess Mill Scrap	C34500	See Tab C34500
4/19/1996 12,674 353 Billet Cuts C35300 Off Analysis		Total Pounds:				
12,674 353 Billet Cuts C35300 Off Analysis	3538					
		4/19/1996	12,674	353 Billet Cuts	C35300 Off Analysis	See Tab C35300

Metal Code	Shipped Date	Pounds	Description	CDA Number	Chemical Content
	8/13/1997	38,370	O.A. Cake Cuts	C35300 Off Analysis	See Tab C35300
	9/23/1997	40,122	O.A. 3530 Scrap	C35300 Off Analysis	See Tab C35300
	11/25/1997	36,758	O.A. 3530 Scrap	C35300 Off Analysis	See Tab C35300
	3/17/1998	36,832	O.A. 353 Cuts	C35300 Off Analysis	See Tab C35300
	3/18/1998	23,162	O.A. 353 Cuts	C35300 Off Analysis	See Tab C35300
	3/19/1998	20,060	O.A. 353 Cuts	C35300 Off Analysis	See Tab C35300
	6/4/1999	38,886	Off Analysis 353 Cake Cuts	C35300 Off Analysis	See Tab C35300
	11/17/1999	6,302	OA 353 Cake Cuts	C35300 Off Analysis	See Tab C35300
	11/17/1999	7,374	OA 353 Cake Cuts	C35300 Off Analysis	See Tab C35300
	11/14/2000	4,494	Spill W/ FE	C35300 with Iron	See Tab C35300
	1/23/2001	5,358	2 Spills W/FE	C35300 with Iron	See Tab C35300
	Total Pounds:	270,392			
3600					
	4/19/1996	6,256	3608 Billet Cuts	C36000	See Tab C36000
	8/23/1999	17,446	6 Boxes Alloy 3600 Mill Scrap	C36000	See Tab C36000
	8/25/1999	10,080	2 Boxes Alloy 360 Mill Scrap	C36000	See Tab C38000
	Total Pounds:	33,782			
3608					
	3/20/1998	3,758	2 Furnace Spill	C36000 Off Analysis	See Tab C36000
	3/26/1998	6,014	3608 O.A. Cuts	C36000 Off Analysis	See Tab C36000
	5/19/1999	8,418		C36000 Off Analysis	See Tab C36000
	- 8/16/2001	6,642	Mixed Alloys W/ Staples, 100 MTL, 9	C36000 Off Analysis	See Tab C36000
	Total Pounds:	24,832			
3770					
	3/19/1998	8,136	O.A. 377 Cuts	C37700 Off Analysis	See Tab C37700

* Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

	3/20/1998	16,548	O.A. 377 Cuts	C37700 Off Analysis	See Tab C37700
	3/23/1998	12,864	3778 O.A. Cuts	C37700 Off Analysis	See Tab C37700
	3/26/1998	6,822	3778 O.A. Cuts	C37700 Off Analysis	See Tab C37700
	Total Pounds:	44,368		-	
4118					
	12/18/1997	8,218	O.A. Scrap Cuts	C41100 Off Analysis	See Tab C41100
	12/17/1998	2,508	Furnace Spill	C41100 Off Analysis	See Tab C41100
	1/27/1999	10,188	Mill Scrap	C41100 Off Analysis	See Tab C41100
	2/8/1999	40,216	O A Cake Cuts	C41100 Off Analysis	See Tab C41100
	3/8/1999	14,080	O A 4110 Scrap	C41100 Off Analysis	See Tab C41100
	10/5/1999	5,822	OA Cake Cuts W/. 3% FE	C41100 with Iron	See Tab C41100
	7/12/2000	11,654	Spiit	C41100 Off Analysis	See Tab C41100
	Total Pounds:	92,684			
4220					
	11/21/1998	2,500	1 4220 Spil W/Fe AND DIRT	C42200 with fron	See Tab C42200
	11/24/1998	14,966	1 Alloy 4220 Furnace Spill	C42200 Off Analysis	See Tab C42200
	Total Pounds:	17,466			
4228					
	1/26/1998	3,300	1 Furnace Spill	C42200 Off Analysis	See Tab C42200
	10/5/1999	11,414	OA Cake Cuts W/ 2.2% FE	C42200 with Iron	See Tab C42200
	3/12/2001	8,634	Furnace Slug	C42200 Off Analysis	See Tab C42200
	5/21/2001	11,832	O.A. Cuts W/ .3439 PB	C42200 Off Analysis	See Tab C42200
	Total Pounds:	35,180			
4430					

* Breakdown provided by Mike Houston, GBC Metals, LLC.

פנמו בחמב	mein Code Suibbea Date I	LORDING	nescribinal	CDA Mamber	
	11/30/1998	3,798	1 Fumace Spill	C44300	See Tab C44300
	Total Pounds:	3,798			
4438					
	3/23/1998	10,840	4438 O.A. Cuts	C44300 Off Analysis	See Tab C44300
	3/26/1998	7,398	4438 O.A. Cuts	C44300 Off Analysis	See Tab C44300
	12/30/1998	99	O.A. Cuts	C44300 Off Analysis	See Tab C44300
	12/31/1998	2,458	O.A. Cuts	C44300 Off Analysis	See Tab C44300
	3/12/2001	11,934	O.A. Cuts W/ .195 PB	C44300 Off Analysis	See Tab C44300
	3/12/2001	11,596	O.A. Cuts W/ .1 PB	C44300 Off Analysis	See Tab C44300
	Total Pounds:	44,890			
4640					
•	1/26/1998	8,574	O.A. Cuts	C46400 Off Analysis	See Tab C46400
	2/11/1998	9,548	O.A. 464 Cuts	C46400 Off Analysis	See Tab C46400
	Total Pounds:	18,120			
2108					
	12/18/1997	8,522	O.A. Scrap Cuts	C51000 Off Analysis	See Tab C51000
	12/18/1997	2,872	O.A. Scrap Cuts	C51000 Off Analysis	See Tab C51000
	12/18/1997	11,052	O.A. Scrap Cuts	C51000 Off Analysis	See Tab C51000
	12/19/1997	899	O.A. Scrap Cuts	C51000 Off Analysis	See Tab C51000
	1/15/2001	6,968	Spill	C51000 Off Analysis	See Tab C51000
	3/14/2001	17,544	Slug W/ FE	C51000 with Iron	See Tab C51000
	3/14/2001	930	Slug W/ FE	C51000 with Iron	See Tab C51000
	Total Pounds:	48,556			

* Breakdown provided by Mite Houston, GBC Metals, LLC.

	12/29/1997	44 245			See Tab C63400
		٠. د	O.A. scrap cuts	C63400 Off Analysis	
	1/26/1998	2,202	Furnace Spill	C63400 Off Analysis	See Tab C63400
	1/27/1998	6,158	Furnace Spill	C63400 Off Analysis	See Tab C63400
	1/30/1998	11,370	Fumace Spill	C63400 Off Analysis	See Tab C63400
	12/30/1998	13,522	O.A. Cuts	C63400 Off Analysis	See Tab C63400
	Total Pounds:	44,592			
9969					
	12/16/1998	196	1 Spill	C63600	See Tab C63600
	Total Pounds:	196			
6368					
	12/29/1997	5,612	O.A. Scrap Cuts	C63600 Off Analysis	See Tab C63600
	1/22/1998	5,598	O.A. Billet Cuts	C63600 Off Analysis	See Tab C63600
	Total Pounds:	11,210			
6420					
	12/28/1998	11,750	O.A. Billet Cuts	C64200 Off Analysis	See Tab C64200
	1/21/1999	35,630	Mill Scrap	C64200	See Tab C64200
	1/23/1899	12,874	Mill Scrap	C64200	See Tab C64200
	5/19/1999	6,572		C64200	See Tab C64200
	7/15/1999	16,976	12' Rods Scrapped @ Carpenter	C64200	See Tab C64200
	Total Pounds:	83,802			
6425			-		•
	1/23/1999	15,892	Mill Scrap	C64200	See Tab C64200
	Total Pounds:	15,892			
6428					

* Breakdown provided by Mike Houston, GBC Meials, LLC.

	こころ カンダイング				
	12/11/1997	5,862	O.A. 6428 Cuts	C64200 Off Analysis	See Tab C64200
	12/12/1997	19,318	O.A. 6420 Cuts	C64200 Off Analysis	See Tab C64200
	12/12/1997	7,780	O.A. 6420 Cuts	C64200 Off Analysis	See Tab C64200
	12/15/1997	13,926	O.A. 6420 Cuts	C64200 Off Analysis	See Tab C64200
	12/15/1997	38,452	O.A. 6420 Cuts	C64200 Off Analysis	See Tab C64200
	12/29/1997	2,886	O.A. Scrap Cuts	C64200 Off Analysis	See Tab C64200
	1/30/1998	3,682	Fumace Spill	C64200 Off analysis	See Tab C64200
	12/29/1998	9,298	O.A. Billet Cuts	C64200 Off Analysis	See Tab C64200
	12/29/1998	6,446	O.A. Billet Cuts	C64200 Off Analysis	See Tab C64200
	12/29/1998	6,102	O.A. Billet Cuts	C64200 Off Analysis	See Tab C64200
	12/29/1998	5,842	O.A. Billet Cuts	C64200 Off Analysis	See Tab C64200
	12/30/1998	5,694	O.A. Cuts	C64200 Off Analysis	See Tab C64200
	12/30/1998	7,816	O.A. Cuts	C64200 Off Analysis	See Tab C64200
	12/31/1998	640	O.A. Cuts	C64200 Off Analysis	See Tab C64200
	Total Pounds:	: 133,744			
06490					
	12/12/1997	22,128	O.A. 6468 Cuts	C64900 Off Analysis	See Tab C64900
	12/12/1997	20,228	O.A. 6490 Cuts	C64900 Off Analysis	See Tab C64900
	Total Pounds:	42,356			
6498					٠
	12/18/1997	13,440	O.A. Scrap Cuts	C64900 Off Analysis	See Tab C64900
	12/19/1897	22,190	O.A. Scrap Cuts	C64900 Off Analysis	See Tab C64900
	12/19/1997	5,722	O.A. Scrap Cuts	C64900 Off Analysis	See Tab C64900
	12/29/1997	1,642	O.A. Scrap Cuts	C64900 Off Analysis	See Tab C64900
	1				

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Metal Code	Metal Code Shipped Date	Pounds	Description	CDA Number	Chemical Content
6510					
	12/28/1998	7,258	O.A. Billet Cuts	C65100 Off Analysis	See Tab C65100
	1/22/1999	21,872	Mill Scrap	C65100	See Tab C65100
	1/23/1999	34,178	Mill Scrap	C65100	See Tab C65100
	1/26/1999	212	Mill Scrap	C65100	See Tab C65100
	1/27/1999	16,122	Mili Scrap	C65100	See Tab C65100
	1/28/1999	31,026	Mill Scrap	C65100	See Tab C65100
	1/29/1999	4,820	Mill Scrap	C65100	See Tab C65100
	1/30/1999	15,834	Mill Scrap	C65100	See Tab C65100
	2/4/1999	5.854	Casting Salvage	C65100	See Tab C65100
	5/19/1999	2,344		C65100	See Tab C65100
	Total Pounds:	139,520			
8159					
	12/28/1998	8,034	O.A. Billet Cuts	C65100 Off Analysis	See Tab C65100
	12/30/1998	5,226	O.A. Cuts	C65100 Off Analysis	See Tab C65100
	12/31/1998	6,856	O.A. Cuts	C65100 Off Analysis	See Tab C65100
	Total Pounds:	20,116			
6530					
	1/28/1999	27,778	Mill Scrap	C65300	Min 97.4% Cu (incl. Ag)/.05% Pb/.8% Fe/2.0 - 2.6% Si
	1/29/1999	1,474	Mill Scrap	C65300	Min 97.4% Cu (incl. Ag)/.05% Pb/.8% Fe/2.0 - 2.6% Si
	1/30/1999	30,976	Mill Scrap	C65300	Min 97.4% Cu (incl. Ag)/.05% Pb/.8% Fe/2.0 • 2.6% Si
	Total Pounds:	5: 60,228			

6551

Metal Code	Shipped Date	Pounds	Description	CDA Number	Chemical Content
	1/26/1998	3,302	Furnace Spill	C65500	See Tab C65500
	1/25/1999	30,618	Mill Scrap	C65500	See Tab C65500
	1/25/1999	32,496	Mill Scrap	C65500	See Tab C65500
	1/25/1999	33,502	Mill Scrap	C65500	See Tab C65500
	1/26/1999	34,230	Mill Scrap	C65500	See Tab C65500
	1/26/1999	31,488	Mill Scrap	_ C65500	See Tab C65500
	1/27/1999	6,118	Mill Scrap	C65500	See Tab C65500
	Total Pounds:	171,754			
6558					
	12/11/1997	34,322	O.A. 6550 Cuts	C65500 Off Analysis	See Tab C65500
	12/15/1997	8,684	O.A. 6550 Cuts	C65500 Off Analysis	See Tab C65500
	12/18/1997	398	O.A. Scrap Cuts	C65500 Off Analysis	See Tab C65500
	12/18/1997	518	O.A. Scrap Cuts	C65500 Off Analysis	See Tab C65500
	12/19/1997	6,938	O.A. Scrap Cuts	C65500 Off Analysis	See Tab C65500
	3/23/1998	6,990	6558 O.A. Cuts	C65500 Off Analysis	See Tab C65500
	12/16/1998	2,706	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	12/28/1998	6,604	O.A. Billet Cuts	C65500 Off Analysis	See Tab C65500
	1/22/1999	4,968	O A 6550 Scrap	C65500 Off Analysis	See Tab C65500
	5/19/1999	208		C65500 Off Analysis	See Tab C65500
	5/20/1999	10,518	Tinned 6550 Scrap	C65500 Tin Coated	See ⊤ab C65500
	9/9/1999	10,204	13 Boxes Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	10/19/1999	7,324	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	10/20/1999	13,860	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	10/29/1999	5,132	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	11/15/1999	7,118	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	2/15/2000	6,294	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500

* Breakdown provided by Mike Houston, GBC Metals, LLC.

metat Coae	amer madding				
	4/6/2000	11,118	11 Boxes of Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	5/24/2000	9,498	Tinned 655 Slitter Scrap	C65500 Tin Coated	See Tab C65500
	5/30/2000	276	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	6/20/2000	4,444	Tinned 655 Slitter Scrap	C65500 Tin Coated	See Tab C65500
	7/12/2000	15,610	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	7/12/2000	18,354	Tinned 655 Scrap	C65500 Tin Coated	See Tab C65500
	9/28/2000	6,870	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	9/29/2000	11,970	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	10/19/2000	8,296	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	10/23/2000	2,637	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	10/25/2000	2,184	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	10/26/2000	404	Tinned 6550 Scrap	C65500 Tin Coated	See Tab C65500
	11/14/2000	8,276	Tinned 6550	C65500 Tin Coated	See Tab C65500
	11/15/2000	6,264	Tinned 6550	C65500 Tin Coated	See Tab C65500
	1/5/2001	9,702	Tinned 655	C65500 Tin Coated	See Tab C65500
	4/18/2001	20,244	Tinned 655	C65500 Tin Coated	See Tab C65500
	4/26/2001	2,874	Tinned 655	C65500 Tin Coated	See Tab C65500
	5/8/2001	8,660	Tinned 655	C65500 Tin Coated	See Tab C65500
	7/17/2001	15,796	Tinned 655	C65500 Tin Coated	See Tab C65500
	7/19/2001	18,374	Tinned 655	C65500 Tin Coated	See Tab C65500
	8/16/2001	17,218	Tinned 655	C65500 Tin Coated	See Tab C65500
	9/14/2001	12,952	Tinned Alloy 655	C65500 Tin Coated	See Tab C65500
	Total Pounds:	345,107			
0959					
	1/29/1999	11,588	Mill Scrap	C65600	See Tab C65600
	2/16/1999	400			

* Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

Metal Code Shipped Date	Suppen Dute 1 Dunas				
	Total Pounds:	14,688			
6730					
	12/28/1998	4,774	O.A. Billet Cuts	C67300 Off Analysis	See Tab C67300
	Total Pounds:	4,774			
6731					
	5/19/1999	450		C67300	See Tab C67300
	Total Pounds:	450			-
6738					
	1/27/1998	24,044	O.A. Cuts	C67300 Off Analysis	See Tab C67300
	1/30/1998	19,058	O.A. Cuts	C67300 Off Analysis	See Tab C67300
	2/11/1998	21,656	O.A. 673 Cuts	C67300 Off Analysis	See Tab C67300
	2/19/1998	17,502	O.A. 673 Cuts	C67300 Off Analysis	See Tab C67300
	12/28/1998	7,062	O.A. Billet Cuts	C67300 Off Analysis	See Tab C67300
	12/29/1998	3,536	O.A. Billet Cuts	C67300 Off Analysis	See Tab C67300
	Total Pounds:	92,858			٠
6750					•
	5/19/1999	254		C67500	See Tab C67500
	Total Pounds:	254			
0769					
	1/26/1998	5,596	Furnace Spill	C69400	See Tab C69400
	12/16/1998	2,926	1 Spill	C69400	See Tab C69400
	12/17/1898	5,284	Mill Scrap	C69400	See Tab C69400
	12/17/1998	30,278	Mill Scrap	C69400	See Tab C69400
	12/18/1098	30 A76	Mill Soron	007000	007000 AFE 000

* Breakdown provided by Mike Houston, GBC Metals, LLC.

mean cone	The same				
	12/21/1998	3,488	Mill Scrap	C69400	See Tab C69400
	12/28/1998	6,506	O.A. Billet Cuts	C69400 Off Analysis	See Tab C69400
	12/28/1998	1,146	O.A. Billet Cuts	C69400 Off Analysis	See Tab C69400
	Total Pounds:	87,650			
6943					
	12/21/1998	22,284	Milt Scrap	C69430	See Tab C69430
	12/23/1998	25,990	Mill Scrap	C69430	See Tab C69430
	Total Pounds:	48,274			
6948					
	12/19/1997	22,746	O.A. Scrap Cuts	C69400 Off Analysis	See Tab C69400
	12/22/1997	11,836	O.A. Scrap Cuts	C69400 Off Analysis	See Tab C69400
	12/23/1997	24,666	O.A. Scrap Cuts	C69400 Off Analysis	See Tab C69400
	1/22/1998	17,194	O.A. Billet Cuts	C69400 Off Analysis	See Tab C69400
	1/27/1998	1,606	Fumace Spiil	C69400 Off Analysis	See Tab C69400
	12/16/1998	6,354	O A 694 Billet Cuts	C69400 Off Analysis	See Tab C69400
	12/16/1998	18,984	O A 694 Billet Cuts	C69400 Off Analysis	See Tab C59400
	12/16/1998	2,004	O A 694 Billet Cuts	C69400 Off Analysis	See Tab C69400
	12/29/1998	4,120	O.A. Billet Cuts	C69400 Off Analysis	See Tab C69400
	12/31/1998	2,666	O.A. Cuts	C69400 Off Analysis	See Tab C69400
	Total Pounds:	112,156			
0269					
	11/18/1998	31,422	Mixed Forms of 6970 Mill Scrap	C69700	See Tab C69700
	11/18/1998	31,338	Mixed Forms of 6970 Mill Scrap	C69700	See Tab C69700
	11/19/1998	32,796	Mixed Forms of 6970 Mill Scrap	C69700	See Tab C69700
	44/10/1008	4	Control of the second s		

* Breakdown provided by Mike Houston, GBC Metals, LLC.

intenni cone	ourppea Dure	I Dietens	. condition	Contramed	
	Total Pounds:	126,150			
8269					
	1/26/1998	12,314	O.A. Cuts	C69700 Off Analysis	See Tab C69700
	2/11/1998	3,442	O.A. 697 Cuts	C69700 Off Analysis	See Tab C69700
	Total Pounds:	15,756			
2060					
	11/21/1998	2,710	1 Spill W/High Zn	C70600 with Zinc	See Tab C70600
	11/30/1998	12,136	5 Fumace Spills	C70600	See Tab C70600
	Total Pounds:	14,846			
7150					
	11/30/1998	2,820	1 Fumace Spill	C71500	See Tab C71500
	12/28/1998	6,094	O.A. Billet Cuts	C71500 Off Analysis	See Tab C71500
	Total Pounds:	8,914			
2600					
	3/23/1998	6,682	7608 O.A. Cuts	C76000 Off Analysis	See Tab C76000
	Total Pounds:	6,682			
870I					
	7/22/1998	34,274	Source Document is Casting Receipts & Shipments by Content printout for 7/22/1998; no invoice available	C11000	See Tab C11000
	11/5/1998	45,623	Source Document is Casting Receipts & Shipments by Content printout for 11/5/1998, no invoice available	C11000	Ses Tab C11000
	Total Pounds:	79,897			
8702					

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Page 18 of 47

^{*} Breakdown provided by Mike Houston, GBC Metals, LLC.

Chemical Content	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite. etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metaliki (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with batance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper and zinc) with batance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*
CDA Number														
Description	6000 Series	6000 Saries	2000 Series	2000 Series	2000 Series	3000 Series	3000 Series	6000 Series	6000 Series	2000 Series	2000 Series	3000 Series	2000 Series	3000 Series
Pounds	33,936	31,588	34,432	33,264	35,220	33,876	34,844	34,464	22,908	11,576	34,668	33,550	34,432	34,912
Metal Code Shipped Date	8/30/1996	8/30/1996	9/8/1/896	9/1 1/1 995	9/18/1996	9/18/1996	9/19/1996	9/25/1996	9/26/1996	9/26/1996	9/27/1996	10/7/1996	10/10/1996	10/15/1996

* Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

* Breakdown provided by Mike Houston, GBC Metaks, LLC. Monday, July 14, 2008

Page 20 of 47

Page 21 of 47

^{*} Brenddown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

^{*} Breakdown provided by Mike Houston, GBC Metals, LLC.

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Page 23 of 47

* Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

Page 24 of 47

Page 25 of 47

Breakdown provided by Mike Houston, GBC Metals, LLC.

* Breakdown provided by Mike Houston, GBC Meads, LLC. Monday, July 14, 2008

Page 26 of 47

* Breakdown provided by Mike Houston, GBC Metals, LLC.

etc.

Chemical Content	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphile, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphita, etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metalic (copper and zinc) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper and zinc) with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic (copper, zinc and lead) with balance being carbon, charcoal, graphile, etc.*	Approximately 70% metallic (copper and zinc)
CDA Number														
Description	Fumace Screenings	Fumace Screenings	Fumace Screenings	3000 Series Furnace Screenings	6000 Series Furnace Screenings	2000 Series Furnace Screenings	3000 Series Furnace Screenings	3000 Series Furnace Screenings	2000 Series Furnace Screenings	6000 Series Furnace Screenings	2000 Series Furnace Screenings	2000 Series Furnace Screenings	3000 Series Furnace Screenings	2000 Series Furnace Screenings
Pounds	850'6	13,430	3,124	23,996	10,682	33,966	34,502	34,740	34,246	18,654	34,316	32,968	35,400	31,768
Metal Code Shipped Dare	12/22/1997	12/22/1997	12/23/1997	1/8/1998	1/8/1898	1/19/1998	1/20/1998	2/4/1998	2/5/1998	2/19/1998	9/1/1998	9/4/1998	9/9/1998	9/11/1998

" Breakdown provided by Mike Houston, GBC Metals, LLC.

Page 19 of 47

^{*} Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

Page 30 of 47

^{*} Breakdown provided by Mike Houston, GBC Metals, LLC.

* Breakdown provided by Mike Houston, GBC Metals, LLC.

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Page 32 of 47

Metal Code	Shipped Date	Pounds	Description	CDA Number	Chemical Content
	6/29/1999	33,430	Fumace Skimmings		Approximately 70% metallic with balance baing carbon, charcoal, graphile, etc.
	7/12/1999	33,158	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	8/16/1999	33,666	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	8/27/1999	25,460	Furnace Screenings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	9/3/1999	32,704	Fumace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	9/10/1999	30,794	Fumace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	9/10/1999	29,186	Fumace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	9/14/1999	22,180	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	10/29/1999	14,614	Fumace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	11/18/1999	16,074	Fumace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	11/22/1999	26,836	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."
	11/29/1999	28,570	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	12/8/1999	34,430	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	2/15/2000	27,088	Fumace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	2/22/2000	31,196	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	3/1/2000	32,006	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	3/3/2000	32,686	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
	3/8/2000	32,370	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcosl, graphite, etc.*

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Chemical Content	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
CDA Number																		
Description	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Fumace Skimmings	Fumace Skimmings	12 Boxes of Furnace SkimmIngs	11 Boxes of Furnace Skimmings	Fumace Skimmings	Furnaca Skimmings	Fumace Skimmings	Furnace Skimmings	Fumace Skimmings	Furnace Skimmings	Fumaca Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Fumace Skimmings
Pounds	33,172	33,106	33,094	34,086	34,922	35,324	34,774	33,838	5,698	17,004	32,270	18,822	33,568	34,412	30,796	11,096	25,492	34,192
Metal Code Shipped Date	3/13/2000	3/21/2000	3/24/2000	3/27/2000	3/28/2000	4/5/2000	4/11/2000	4/18/2000	4/19/2000	4/25/2000	4/26/2000	4/28/2000	5/4/2000	5/10/2000	8/23/2000	5/24/2000	5/30/2000	5/31/2000
Metal Co											•							

* Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

Chemical Content	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metalic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, 'graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphits, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."
CDA Number									,									•
Description	Fumace Skimmings	Fumace Skimmings	Furnace Skimmings	Furnace Skimmings	Fumace Skimmings	Fumace Skimmings	Fumace Skimmings	Fumace Skimmings	Fumace Skimmings	Fumace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings
Pounds	33,242	34,616	33,896	34,852	25,226	29,090	27,932	34,034	30,816	35,080	35,936	13,780	32,534	23,410	30,690	34,936	28,098	36,426
Metal Code Shipped Date	5/31/2000	6/13/2000	6/14/2000	6/20/2000	6/20/2000	6/20/2000	6/21/2000	6/21/2000	6/27/2000	7/11/2000	7/11/2000	7/12/2000	7/19/2000	7/21/2000	7/25/2000	7/27/2000	8/11/2000	8/15/2000
Metal Code																		

* Breakdown provided by Mike Houston, GBC Metals, LLC. Monday, July 14, 2008

Chemical Content	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphile, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with batance being cerbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphile, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphita, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon charcoal graphite etc.*
CDA Number														•				
Description	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skirnmings	Furnace Skimmings	Fumace Skimmings	Furnace Skimmings	Furnace Skimmings	Fumace Skimmings	Fumace Skimmings	Fumace Skimmings	Fumace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings
Pounds	31,860	34,440	33,468	31,520	33,230	32,094	34,838	12,390	34,382	36,002	33,724	29,362	33,846	33,018	34,818	17,770	17,324	28,674
Metal Code Shipped Date	8/17/2000	8/21/2000	8/23/2000	8/28/2000	9/19/2000	9/20/2000	9/21/2000	9/26/2000	9/27/2000	10/3/2000	10/4/2000	10/5/2000	10/10/2000	10/10/2000	10/18/2000	10/20/2000	10/23/2000	10/26/2000
Metal (

* Breakdown provided by Mike Houston, GBC Metals, LLC.

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Chemical Content	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being cerbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphlte, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."	Approximately 70% metallic with balance being carbon, charcoal, graphite, etc.*
CDA Number																		
Description	Skimmings	Fumace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Furnace Skimmings	Fumace Skimmings	Furnace Skimmings	Fumace Skimmings									
Pounds	5,108	33,384	27,872	34,714	34,670	14,966	34,540	34,426	32,364	26,228	24,666	35,204	5,680	15,244	28,666	34,548	13,288	33,910
Metal Code Shipped Date	1/15/2001	1/22/2001	1/31/2001	2/1/2001	2/1/2001	2/1/2001	2/8/2001	2/14/2001	3/9/2001	3/12/2001	3/14/2001	3/22/2001	4/18/2001	4/20/2001	4/26/2001	5/2/2001	5/8/2001	5/10/2001

* Breukdown provided by Mike Houston, GBC Metals, LLC.

Menn Cone Sumbea Date					
	7/6/2001	34,972	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphite, etc."
	7/6/2001	33,606	Furnace Skimmings		Approximately 70% metallic with balance being carbon, charcoal, graphile, etc.*
	Total Pounds:	8,865,535			
8724			·		
-	4/19/2001	37,846	Copper Oxide 75% Metal /100% CU	*	Copper Oxide (approximately 75% metal 100% of which is Cu)
	Total Pounds:	37,946			
8725					
	5/27/1998	31,282	Casting Salvage		Mixed metal consisting of many different alloys*
	5/27/1998	34,468	Casting Salvage		Mixed metal consisting of many different alloys*
	5/28/1998	29.040	Casting Salvage		Mixed metat consisting of many different alloys*
	5/28/1998	31,858	Casting Salvage		Mixed metal consisting of many different alloys*
	6/1/1998	24,142	Casting Salvage		Mixed metal consisting of many different alloys*
	8/18/1998	30,092	Casting Salvage		Mixed metal consisting of many different alloys*
	11/23/1996	33,420	Casting Salvage		Mixed metal consisting of many different alloys*
	11/24/1996	21,648	Casting Salvage		Mixed metal consisting of many different alloys*
	11/25/1998	26,172	Casting Salvage		Mixed metal consisting of many different alloys*
	11/30/1998	2,818	3 Furnace Spills		Mixed metal consisting of many different alloys."
	1/30/1999	14,212	Casting Salvage		Mixed metal consisting of many different alloys."
	2/2/1999	33,446	Casting Salvage		Mixed metal consisting of many different

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Chemical Content	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys:	Mixed metal consisting of many different attoys*	Mixed metal consisting of many different alloys*	· Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys.	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different altoys*	Mixed metal consisting of many different alloys*							
CDA Number					·													
Description	Casting Salvage	Casting Salvage	Casting Salvage	Casting Salvage	Low Grade Casting Salvage	High Grade Casting Salvage	Low Grade Casting Salvage	Low Grade Casting Salvage	Low Grade Casting Salvage	High Grade Casting Salvage	Low Grade Casting Salvage	High Grade Casting Salvage	High Grade Casting Salvage	High Grade Casting Salvage	Casting Salvage	Casting Salvage	Casting Salvage	Casting Salvage
Pounds	10,318	23,498	19,456	11,968	35,028	5,624	22,132	35,212	26,900	13,532	20,486	28,822	7,832	12,278	1,958	572	1,038	3,660
Metal Code Shipped Date	2/3/1999	2/3/1999	2/3/1999	2/3/1999	2/4/1999	2/4/1999	2/4/1999	2/4/1999	2/5/1999	2/5/1998	2/5/1999	2/5/1999	2/5/1999	2/10/1999	6/20/1989	986 1/02/9	5/20/1999	5/20/1999
Metal Code																		

* Breakdown provided by Mike Houston, GBC Metais, LLC. Monday, July 14, 2008

OLIN-CHEMETCO_3326

Metal Code Shipped Date	Pounds	Description	CDA Number	Chemical Content
10/4/1899	5,016	Casting Salvage After Sorting		Mixed metal consisting of many different alloys*
10/5/1999	6,620	Casting Salvage After Sorting		Mixed metal consisting of many different alloys*
11/15/1999	11,590	Mixed Baler Scrap Grease		Mixed metal consisting of many different altoys.
11/17/1999	2,330	Mixed Baler Scrap Grease	٠	Mixed metal consisting of many different alloys*
4/17/2000	19,902	Casting Salvage		Mixed metal consisting of many different alloys*
5/30/2000	1,048	Mixed Casting Salvage		Mixed metal consisting of many different alloys*
6/21/2000	1,412	Mixed Furnace Spill		Mixed metal consisting of many different alloys*
6/21/2000	4,498	Mixed Sheet Scrap W/ Staples		Mixed metal consisting of many different altoys*
0/28/2000	9,578	Casting Salvage		Mixed metal consisting of many different alloys*
10/5/2000	6,298	Casting Salvage (60% Metal / 70% CU)	·	Mixed metal (approximately 60% metal, 70% of which is Cu)*
10/23/2000	1,322	Mixed Tinned Brasses		Mixed metal consisting of many different alloys*
10/23/2000	1,236	Lab Scrap		Mixed metal consisting of many different alloys*
10/25/2000	31,158	Furnace Skimmings		Mixed metal consisting of many different alloys*
10/25/2000	1,334	Mixed Tinned Brasses		Mixed metal consisting of many different alloys*
12/22/2000	3,026	Mixed Chips - "Borings"		Mixed metal consisting of many different alloys*
12/27/2000	32,904	Casting Salvage		Mixed metal consisting of many different alloys*
12/27/2000	13,946	Casting Salvage		Mixed metat consisting of many different alloys*
12/28/2000	4,078	Casting Salvage		Mixed metal consisting of many different alloys*

* Breakdown provided by Mike Houston, GBC Metaks, LLC.

Chemical Content	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys."	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different altoys*	Mixed metal consisting of many different alloys*	Mixed metal consisting of many different alloys*										
CDA Number																		
Description	Casting Salvage	Casting Salvage	Casting Salvage - Sorted	Casting Salvage - Sorted	Casting Salvage - Unsorted	Casting Salvage - Sorted	Casting Salvage - Unsorted	Casting Salvage - Sorted	Casting Salvage - Unsorted	Casting Salvage - Unsorted	Casting Salvage - Sorfed	Casting Salvage - Unsorted	Casting Salvage - Sorted	Casting Salvage - Unsorted	Casting Salvage - Sorted	Casting Salvage - Unsorled	Casting Salvage - Sorted	Casting Salvage - Unsorted
Pounds	15,472	16,288	33,966	22,280	10,962	18,542	5,932	5,502	15,930	3,098	3,496	22,707	3,010	21,110	13,214	16,696	16,112	5,562
Metal Code Shipped Date	12/28/2000	12/28/2000	1/3/2001	1/4/2001	1/4/2001	1/5/2001	1/5/2001	1/8/2001	1/8/2001	1/15/2001	1/16/2001	1/16/2001	1/16/2001	1/17/2001	1/17/2001	1/18/2001	1/18/2001	1/23/2001

* Breakdown provided by Mike Housson, GBC Metals, LLC.

Metal Code Shipped Date		rounas	Describnon		
	1/23/2001	20,090	Casting Salvage - Soried		Mixed metal consisting of many different alloys*
	3/12/2001	4,082	Rotocone Sludge		Mixed metal consisting of many different alloys*
	4/18/2001	3,722	Casting Salvage 60% Metal / 70% CU		Mixed metal (approximately 60% metal, 70% of which is Cu)*
	4/19/2001	35,274	Casting Salvage 60% Metal / 70% CU		Mixed metal (approximately 60% metal, 70% of which is Cu)*
	4/20/2001	33,318	Casting Salvage 60% Metal / 70% CU		Mixed metal (approximately 60% metal, 70% of which is Cu)*
	4/20/2001	19,828	Casting Salvage 60% Metal / 70% CU		Mixed metal (approximately 60% metal, 70% of which is Cu)*
	5/16/2001	32,366	Casting Salvage - 40% Metal, 70% CU		Mixed metal (approximately 40% metal, 70% of which is Cu)*
	5/17/2001	24,564	Casting Salvage - 40% Metal, 70% CU		Mixed metal (approximately 40% metal, 70% of which is Cu)*
	5/17/2001	11,154	Casting Salvage - Transformers		. Mixed metal consisting of many different alloys*
	5/24/2001	6,416	Casting Salvage		Mixed metal consisting of many different alloys*
	Total Pounds:	1,188,899			
8726					
	1/16/1996	32,862	Ajax Pit Cleaning		Mixed metai⁴
	2/19/1996	31,518	Pit Cleanings		Mixed metal*
	2/20/1996	32,356	Pit Cleanings		Mixed metal*
	2/21/1996	33,360	Pit Cleanings		Mixed metal*
	2/22/1996	31,918	Scrap		Mixed metal*
	2/23/1996	33,018	Scrap		Mixed metal*
	2/27/1996	27,608	Scrap		Mixed metal*
	3/29/1996	33,002	Pit Cleanings	•	Mixed metal*
	4/2/1996	34,932	Pit Cleanings		Mixed metal*
	4/9/1996	34 836	Pit Cleanings		Mixed metal*

* Breakdown provided by Mike Housson, GBC Metals, LLC.

Metat Code	9/28/1999	11 070	Alay Di Cleaning	Mixed metal*
	9/20/1999	25. 4	A RAY THE CHEST THE SAME AND THE CHEST THE CHE	Mixed metal*
	10/5/1999	ы 20	Ajax Pit Cleanings	Mixed metal
	11/17/1999	10,536	Ajax Pit Cteanings	Mixed metal⁵
	11/18/1999	9,346	Ajax Pit Cleanings	Mixed metal⁵
	4/19/2000	29,038	Tank Cleanings	Mixed metal*
	6/15/2000	34,068	Tank Cleanings	Mixed metal*
	6/16/2000	36,172	Tenk Cleanings	Nixed metal*
	7/12/2000	14,076	Ajax Tank Cleanings	Mixed metal*
	10/19/2000	8,290	Ajax Tank Cleanings (80% Metal/80% CU)	Approximately 80% metal, 80% of which is Cu
	7/19/2001	16,686	Tank Cleanings 60% Metal 70% CU	Approximately 60% metal, 70% of which is Cu
	7/19/2001	16,686	Tark Cleanings 60% Metal 70% CU	Approximately 60% metal, 70% of which is Cu
	Total Pounds:	530,686		
	11/21/1998	7.240	Mixed Sheet Mill Scrap	Mixed sheet mill scrap consisting of many different alloys*
	12/17/1998	2,262	Mixed Sheet Mill Scrap	Mixed sheet mill scrap consisting of many different alloys*
	12/23/1998	4,348	Mixed Sheet Mill Scrap	Mixed sheet milt scrap consisting of many different alloys*
	6/8/1899	2,298	Mixed Sheet Scrap	Mixed sheet mill acrap consisting of many different alloys*
	9/28/1999	6,580	Mixed Sheet Mill Scrap W/ Steel Sta	Mixed sheet mill scrap consisting of many different alloys*
	10/4/1999	1,746	Mixed Sheet Mill Scrap w/ Grease	Mixed sheet mill scrap consisting of many different alloys*
	10/5/1999	3,996	Mixed Sheet Mill Scrap w/ Grease	Mixed sheet mill screp consisting of many different alloys*
	11/15/1899	3,086	Mixed Sheet Mill Scrap With Steel	Mixed sheet mill scrap consisting of many

^{*} Breakdown provided by Mike Houston, GBC Metals, LLC.

Page 45 of 47

* Breakdown provided by Mike Houston, GBC Metals, LLC.

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Metal Code	Metal Code Shipped Date	Pounds	Description	CDA Number	Chemical Content
	6661/8/9	9,580	Floor Sweeps		Unavailable
	9/28/1999	13,370	Floor Sweepings		Unavailable
	10/4/1999	7,572	Floor Sweepings		Unavailable
	10/19/1999	16,646	Floor Sweepings		Unavailable
	10/20/1999	2,028	Floor Sweepings		Unavailable
	10/29/1999	8,652	Floor Swaepings		Unavailable
	4/6/2000	15,036	4 Boxes of Floor Sweeps		Unavailable
	4/17/2000	7,072	Floor Sweeps		Unavailable
	4/25/2000	15,192	Floor Sweepings (March Sale)		Unavailable
	5/24/2000	362	Steel Transformer W/ CU Bus Bar		Unavailable
	7/21/2000	8,304	Floor Sweeps		Unavailable
	7/25/2000	2,568	Floor Sweeps		Unavailable
	12/22/2000	5,714	Floor Sweeps		Unavailable
	12/27/2000	8,034	Floor Sweeps		Unavailable ·
	1/2/2001	2,520	Floor Sweeps		Unavailable
	1/15/2001	3,158	Floor Sweeps		Unavailable
	4/26/2001	1.362	Floor Sweepings	·	Unavailable
	5/8/2001	6,686	Floor Sweeps		Unavailable
	5/21/2001	7,734	Floor Sweeps		Unavailable
	5/22/2001	1,442	Floor Sweeps		Unavailable
	5/24/2001	1,206	Floor Sweeps		Unavaitable
	8/22/2001	5,654	Floor Sweeps		Unavailable
	9/14/2001	4,422	Floor Sweeps	٠	Unavailable
	Total Pounds:	: 193,048			

* Breakdown provided by Mike Houston, GBC Metals, LLC.

Tab C11000

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 6

Copperati

表。我的時話 表的探 经营 排放的异型地 数 某些批 机带 医丛脑 影响 经

Search Results

C11000 (Electrolytic Tough Pitch)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	0
Min./Max.	99.90 min	E
Nominal	-	04

(1) Cu value includes Ag.

Note: This is a high conductivity copper which has, in the annealed condition a minimum concuctivity of 100%

IACS except for Alloy C10100 which has a minimum conductivity of 101% IACS.

Note: Oxygen and trace elements may vary depending on the process.

Applicable Specifications

Product	Specification
Bands, Projectile Rotating	MILITARY MIL-B-20292
Bar	ASME SB133 ASTM B152 SAE J463, J461
Bar, Bus	ASTM B187
Bar, Forging	ASTM B124
Bolts	ASTM F468
Brazing Filler Metal	FEDERAL QQ-B-650
Foil, Printed Circuits	ASTM B451
Forgings, Die	ASTM B283
Nuts	ASTM F467
Pipe, Bus	ASTM B188
Plate	AMS 4500 ASTM B152 SAE J461, J463
Rod	ASME SB133 MILITARY MIL-C-12166 SAE J461, J463
Rod, Bus	ASTM B187
Rod, Forging	ASTM B124
Screws	ASTM F468

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 6

Shapes	SAE J461, J463
Shapes, Bus	ASTM B187
Shapes, Forging	ASTM B124
Sheet	AMS 4500 ASTM B152, B694 SAE J463, J461
Sheet, Building Construction	ASTM B370
Sheet, Clad	ASTM B506
Sheet, Lead Coated	ASTM B101
Sheet, Printed Circuits	ASTM B451
Strip	AMS 4500 ASTM B694, B152 SAE J463, J461
Strip, Building Construction	ASTM B370
Strip, Clad	ASTM B506
Strip, Printed Circuits	ASTM B451
Studs	ASTM F468
Tube, Bus	ASTM B188
Tube, Welded	ASTM B447
Wire, Medium-Hard Drawn	ASTM B2 FEDERAL QQ-W-343
Wire, Coated With Lead Alloy	ASTM B189
Wire, Coated With Nickel	ASTM B355
Wire, Coated With Silver	ASTM B298
Wire, Coated With Tin	ASTM B246, B33
Wire, Flat	AMS 4500 ASTM B272
Wire, Hard Drawn	ASTM B1 FEDERAL QQ-W-343
Wire, Metallizing	MILITARY MIL-W-6712
Wire, Soft	ASTM B3, B738, B48 FEDERAL QQ-W-343 SAE.J461, J463
Wire, Stranded	ASTM B8, B496, B470, B286, B229, B226, B174, B173, B172 FEDERAL QQ-B-575
Wire, Trolley	ASTM B47, B116

Common Fabrication Processes

Blanking, Coining, Coppersmithing, Drawing, Etching, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning. Squeezing and Swaging, Stamping

Fabrication Properties

Tablication (Topolico	
Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 6

Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Forgeability Rating	65
Machinability Rating	20

Temper Size Work Min		_	
Fiat Products 102	Shear Strengt	Fatigue h Strongth	izod Impact Strength
Flat Products 102	0 ksi	kei	R-lb
HOZ	MPa	MPa	ų
1			
M20	26	13	0.0
Rod	179	90	0.0
Rod M20	22	<u>+</u>	0.0
M20	152	<u> </u>	0,0
25.4	22	1	0.0
Shapes	152	1	0.0
M30 0.5 0 TYP 68 32 10	132	<u> </u>	p.0
12.7	22	F	0.0
M20	152	-	0.0
12.7	22	-	0.0
Flat Products #104	152	1	0.0
H04 0.04 0 TYP 58 50 45 - 6 50 90 57		<u> </u>	
Rod #104 0.25 40 TYP 68 55 50 - 10 60 94	28	-	0.0
H04 0.25 40 TYP 88 55 50 - 10 60 94	193		0.0
Signature Sign			
Wire OS050 0.08 0 TYP 88 36 355 355 355 355	29	⇟——	0.0
OSBSO 0.98 0 TYP 88 35 355 355 355 355 355 355 355 355 355 355 355	200	<u>t</u>	0.0
Plat Products	la i	E	h o
Flat Products H08	24	+	0.0
H08	165	<u> </u>	0.0
1	29	14	0.0
H01 0.025 0 TYP 88 38 30 - 35 25 70	200	97	0.0
Column	25	+	0.0
Rod OS050 1 0 TYP 58 32 10 - 55 - 40	172		0.0
OS080 1 0 TYP 68 32 10 - 55 - 40		1	
Wire H08	22	F	0.0
H08	152	1	0.0
2 20 455 1 1 1			
Flat Products H04	33		0.0
H04 1 0 TYP 88 45 40 - 20 45 85	228	<u> </u>	0.0
25.4 20 010 276 - 20 45 85	-		T
OS060 0.025 0 TYP 68 32 10 - 50 - 40	26	+	0.0
0 64 20 221 69 - 50 40 · · · · · · · · · · · · · · · · · ·	179	1	0.0
H00 0.025 0 TYP 88 38 28 40 10 80 Rod	22 152	+	0.0
0.64 20 248 193 40 10 - 80 Rod		t	
Rod	25	f-	0.0
	172	<u>f</u>	μ.υ
	27	17	0.0
	188	117	0,0
	26	+	0.0
	176	t	0.0

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 6

05025	0.065	Ü	TYP	30	34	11		45-	ks.	-	FF	23	Ŧ	0.0
	1.65	1	1	20	234	76		45	15	-	1	159	丁	0.0
H80	0.065	40	ТҮР	68	55	50		8 60	95 8	3 -	 	29	+-	0.0
	1.85	1		20	379	345	-	8 60	956	i3 -		200	7	0,0
155	0.065	15	TYP	88	40	32		2535	177	5 -	† †	26	┿	0.0
	1,65			20	276	221		25 35	. 774	5	T	179	T	0.0
Flat Pro	ducts	٠											-! -	
M20	0,04	0	TYP	88	34	10	E	45	145	ŀ	ŀŀ	23	Ŧ	0.0
	1			20	234	69	-	45-	45	-	F F	159	7	0.0
Shapes	`													
OS050	0.5	þ	ΤYΡ	86	32	10	-	50-	40		F F.	5.5	-	0.0
	12.7		L	20	221	69	<u></u>	50-	- 40-	<u> </u>	<u> </u>	152	<u> </u>	0.0
Wire						,								
H04	0.08	0	ĪΫΡ	_	55	_t	<u>- </u>	1 -	Į.	-	FE	29	+	0.0
	2			20	379	-	<u></u>	1 -	<u>· </u>		<u> </u>	200	+	0.0
Flat Pro														
OS050	0.04	0	TYP	_	32	10	 -	+++	40	-	 	22	+	0.0
	1			20	221	69	+	45	40-		<u>. 난 노</u>	152	<u> </u>	0.0
Shapes														
H04	0.5	15	ΤΥΡ		40	32	<u> </u>	3035	╬╬	_	┾┾	26		0.0
	12.7	<u> </u>		20	276	221	<u> </u>	3035	<u> </u>	· -	<u> </u>	179	<u>.t</u>	0,0
Tube	n nor	T	le in	<u> </u>				7	Taal					
OS050		<u>р</u> _	ТҮР	68 20	32 221	10 69	-	_	40	-	++	22	╪	0.0
-1 B	1.65	<u> </u>	_	۲۰	221	O3	<u> </u>	45	<u> </u>	<u> </u>	1.1.	152	<u> </u>	0,0
Flat Pro OS025		ю	ТҮР	R.S	34	11		454	. M 5-	1	1. 1.	23	11	ki.o
	1	Ť	 	20	234	76			15		11	159	76	0.0
H10	0.04	6	TYP		57	53			956	<u> </u>	-[-[-	29	+	0.0
. 10	1	Ť	† ''	20	393	365	 [4 82	956		[[200	1	0.0
H01	0.04	 	ТҮР		38	30		25/25			1	25	[0.0
.~1	1	Ť	1117	20	262	207		25 25	70	_	1 	172		0.0
H00 .	0.04	6	ΤΫ́P		36	26	<u> </u>	30 10			- [- [25	╌	0.0
100	4	Ť	-	20 00	248	193		3010	-		ŦŤ	172		0.0
	ľ	1	L	۲.		: =				۳ -				
H04	0 025	Ю	TYP	00	50	45		1250				28		0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1981 F	1083 C
Melting Point - Solidus	1949 F	1065 C
Density*	0.322 lb/in ³ at 68 F	8,91 gm/cm ³ @ 20 C
Specific Gravity	8.91	8.91
Electrical Resistivity	10.3 ohms-cmil/ft @ 68 F	1.71 microhm-cm @ 20 C
Electrical Conductivity**	101 %IACS @ 68 F	0.591 MegaSiemens/cm @ 20 C
Thermal Conductivity	226.0 Btu · ft/(hr · ft2.ºF)at 68	IF391.1 W/m ⋅ °K at 20 C
Coefficient of Thermal Expansion		16.9 ·10 ⁻⁶ per °C (20-100 C)
Coefficient of Thermal Expansion	on 9.6 ·10 ⁻⁸ per °F (68-392 F)	17.3 ·10 ⁻⁶ per °C (20-200 C)
Coefficient of Thermal Expansion	on 9.8 · 10 ⁻⁶ per °F (68-572 F)	17.6 ·10 ⁻⁸ per °C (20-300 C)
Specific Heat Capacity	0.092 Btu/lb/ºF at 68 F	393.5 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 5 of 6

*Actual value .321 - .323.

**Volume and weight basis.

Tempers Most Commonly Used

rempers most commonly osed					
Flat Products					
BAR, DRAWN	H01, H04, H06, O60				
BAR, ROLLED	H01, H04, H06, M20, O60				
PLATE	H00, M20, O60				
SHEET	H00, H02, M20, O60				
STRIP, DRAWN	H04, O60				
STRIP, ROLLED	H00, H01, H02, H04, H08, H10, M20, O60, OS025				
WIRE, DRAWN	H04, H06, O60				
WRE, ROLLED	H04, O60				

Other	
ROD	H04, M20, O60
SHAPES	H04, M20, M30, O60
TUBE	H55, H58, H80, O60, OS025
WIRE	H00, H01, H04, H08, O60

Typical Uses

Architecture

Skylight Frames, Roofing, Building Fronts, Flashing, Gutters, Spouting, Downspouts

Automotive

Gaskets, Radiators

Builders Hardware

Butts, Tacks, Nails, Soldering Copper, Rivets, Cotter Pins, Ball Floats

Building

Screening, Wire Screening

Consumer

Christmas Ornaments

Electrical

Terminals, Switches, Radio Parts, Contacts, Trolley Wire, Magnet Wire, Busbars, Terminal Connectors, Conductors, Electrical, Stranded Conductors, Wire, Electrical

Fasteners

Fasteners

Industrial

Printing Rolls, Chimney Cap Screens, Heat Exchangers, Anodes, Kettles, Chlorine Cells, Rotating Bands, Road Bed Expansion Plates, Vats, Pressure Vessels, Chemical Process Equipment, Pans

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved.

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 6 of 6

Affiliated with the $\underline{\text{International Copper Association, LTD}}$. Copper Connects Life $^{\text{TM}}$

Tab C12000

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 5

Copperan

Search Results

C12000 (Phosphorus-DeoxIdized, Low Residual P)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cս ⁽¹⁾	Ρ
Min./Max.	99.90 min	.004012
Nominal		.008

(1) Cu value includes Ag.

Applicable Specifications

Product	Specification
Bands, Projectile Rotating	MILITARY MIL-B-20292, MIL-B-18907
Bar	ASME SB133 ASTM B152 SAE J461, J463
Bar, Bus	ASTM B187
Brazing Filler Metal	FEDERAL QQ-B-650
Fittings	ASME B16.22
Foil, Printed Circuits	ASTM B451
Nipples	ASTM B687
Pipe	ASME SB42 ASTM B698, B42
Pipe, Bus	ASTM B168
Plate	ASTM B152 SAE J461, J463
Rod	ASME SB133
Rod, Bus	ASTM B187
Shapes	SAE J461, J463
Shapes, Bus	ASTM B187
Sheet	ASTM 8152 SAE J461, J463
Sheet, Clad	ASTM B506
Sheet, Printed Circuits	ASTM B451
Strip	ASTM B152

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 5

	SAE J461, J463
Strip, Clad	ASTM B506
Strip, Printed Circuits	ASTM B451
Tube	ASTM B698, B360
Tube, Bus	ASTM B188
Tube, Coils	ASTM B743
Tube, Condenser	ASME SB111 ASTM B111
Tube, Finned	ASME SB359 ASTM B359
Tube, Rectangular Waveguide	ASTM B372 MILITARY MIL-W-85
Tube, Seamless	ASME SB75 ASTM B75, B641 MILITARY MIL-T-24107 SAE J461, J463
Tube, Seamless Bright Annealed	ASTM B68
Tube, Seamless for Air Conditioning and Refrigeration Field Serv	ice SAE J463, J461
Tube, Seamless for Torpedo Use	MILITARY MIL-T-3235
Tube, U-Bend	ASME SB395 ASTM B395
Tube, Welded	ASTM 8447, B641, B716
Tube, Welded for Air Conditioning and Refrigeration Service	ASTM 8640

Common Fabrication Processes

Blanking, Coining, Coppersmithing, Drawing, Etching, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Forgeability Rating	65
Machinability Rating	20

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength		Strength (0.2%	Yield Strength (0.05% offset)	ξį		ckw		Vickens Hard.	Brit Hor	nell d.	Shear Strength	Faugue	izod Impact Strangtit
	in.	%		F	kal	ksi	ksi	kari	Υ,	8	Ģ₩	30T	500	500	3000	ksi	ksi	ñ-lio
	mm			С	MPa	MPa	MPa	MPa			П	П		Г		M?a	MPa	J.
Pipe						_												

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 5

	مما	ا ما	hual	سم	lr o	Le				L	1	Ł				l		h.
104	0.0 0.0	30	ТҮР	58 20	50 345	45 310			10 50 10 50	-	901- 901-	╪		_	_	28 193	╄	0.0 0.0
lat Pro		Ш		20		J	<u>r </u>		V	Ħ	~ <u>r</u>					133	<u> </u>	0.0
104	0.25	0	ΤΥP	88	50	45	F	-	2 50	F	90	F		, –		28	F	0.0
	3.35			20	345	310			250	-		Ŧ		,		193		0.0
A20	0.25	0	ΤΥP	68	32	10		-	50-	Ħ	40	╁	\neg			22	┼	0.0
	6.35		_	20	221	69	-		50 ·	-	40	1			Ì,	152	-	0.0
102	0.04	0	ΤΥΡ	68	42	36	F	- 1	4 40	-	84 50) -		_		26	13	0,0
	1			20	290	248	-		14 40	Н	84 S	_			_	179	90	0.0
₹od	1									щ					_			·
A2C	1		TYP	68	32	10	<u> </u>		i.5 -	Π	40 ·	Œ				22	1	0.0
	25,4			20	221	69	ŀ	- 1	55-	ŀŀ	40	┢	ŀ		-	152	ŀ	0.0
hapet																		
A30	0.5	0	1YP		32	10	٠		50-	_	40-	4			•	22	-	0.0
	12.7			20	221	69	<u> </u>		50-	щ	40-			•		152	<u> </u>	0.0
A20	0.5	0	TYP	_	32	10	<u> </u>		50 -	н	46-	#		_	<u> </u>	22	-	0.0
	12.7			20	221	69	<u> </u>	<u> </u>	50-	L	40-	<u> </u>			<u> </u>	152	<u> </u>	0.0
	oducts loo4	.	trun	20	ko.	45) E/	_	oole.	, T	r			20	12	0.0
104	0.04	C	TYP	88 20	50 345	45 310			3 50 3 50			_		_		28 193	13 90	0.0
Jn∢	n as	<u></u>	TVD				[_	_	_	4	;		<u> </u>		50	0.0
101	0.25	0	TYP		38	30	f -		35 25	П	_	Ŧ		•	1	25	Ŧ	
ine	6.35	6	TVP	20	262	207			35 25	н	_	<u>,</u> †		•	<u> </u>	172	[4	0.0
108	0.04	ř	TYP	68 20	55 379	50	F		60 6 BO		94 6 64 6			_	F-	29 200	97	0.0
and .	ľ	<u> </u>		20	379	345	<u> </u>	لـــــــا	В	L	* P	3		•	•	200	7,	u.v
Rod 08050	Ti .	b	TYP	6.8	32	10	Γ		55	FT	40	T		_		22	I	6.0
2000	25.4	f	<u> </u>	20	221	69	1		55 -	Ħ	_	1				152	t	0.0
104	0.025	40	TYP		55	50	Ŀ		20 GO		_	Ŧ		_		29	-{	0.0
,,,,	0.64	Ť	 '''	20	379	345	t		20 60			士				200	1	0.0
lat Pr	oducts	L		-	5.0	P-3	<u> </u>		.0 74	Ц	<u> </u>			-		200	<u>. </u>	P-v
104	1	0	ТҮР	68	45	40	F	- 1	20 45	FI	85	Ŧ			ļ	26	F	0.0
	25.4			20	310	276	F		20 45	П	35	Ŧ		_		179	-	0.0
100	0.25	0	ΤÝΡ	68	36	28	F .		10 1 D		ōО-	Ŧ			,	25	F	0.0
	6.35			20	248	193	-	-	4 0 10	П	60-	Ŧ				172	-	. 0.0
03050	0.25	o	TYP	68	32	10	F		50 -		40	Ŧ				22	-	0.0
	5.35			20	221	69	-		50-	F	40	Ŧ			-	152	-	0.0
₹od		•					<u> </u>			_							•	
104	2	16	ΤΥP	68	45	40			20 45	_	_	Ŀ				26	,	0.0
	51			20	310	276	-		20 45	ŀ	85	ŀ		_		179	-	0.0
H04	1	15	TYP	68	48	44	<u> </u>		16 47	П	87	Ŀ				27	17	0.0
	25.4		L_	50	331	303	<u> </u>	-	1647	Ł	37 -	Ŀ		-		18 6	117	0.0
ube																		
25025	0.065	0	TYP	-	34	11	<u> </u>	_	45 ·	Н	45 <u>-</u>	+		-	_	23	+	0.0
	1.65		Ļ	20	234	76	<u> </u>		15-	Ц	45	_‡		-	<u> </u>	159	<u> </u>	0.0
180	0.065	40	TYP		55	50			3 80					٠	▙	29		0.0
le à	1,65	<u> </u>	_	20	379	345	<u> </u>		3 30						느	200	 	0.0
155	0.065	15	ТҰР	_	46	32	 		2535	_	_	_		•	-	26	 	0.0
	1.65	L	<u> </u>	20	276	221	<u> </u>		25 35	L	77 4	ő -		•		179	<u> </u>	G.0
lat Pr 420	0.04	0	İΤΥΡ	KA.	34	10	L		s GL	_	45	T		_		23	L	0.0
n.CV	1	f	11.7	20 20	234	69	[15 - 15 -	Н		Ŧ	-			23 159	[0.0
haper	<u>l' </u>	<u>. </u>	L_,	۴V	<u> </u>	Ľ'	<u> </u>	LI	' - ['	L	<u>'T</u>					1.00	<u> </u>	۷.۷
)S050		0	TYP	58	32	10	Ţ.	-	50F	П	40	Ţ	ī			22	F.	0.0
	12.7		Ė	20	221	69	 		50 ·		40	丰				152	1	0.0
lat Pr	oducts				<u> </u>	'	<u> </u>			Ц					L		1	1
)S050		C	ΙΥΡ	68	32	10	ŀ	E I	15-	Ū	4Ú-	ŀ				32	F	0.0
	1		Γ	20	221	69	1		15 ·		40-	Ŧ				221	<u> </u>	C.O
hape					•					۲								•
104	0.5	15	TYP	88	40	32	<u> </u>		30 35	IJ	. J.	ŀ				23	F	0.0
	12,7			20	276	221	F	- 1	30 35	П	F	Ŧ		-	-	156	F	0.0
ube										_								
	0.065	O				10			15-							22		0.0

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 5

	1,65	1	1	20	221	69	1	ŀ	J.	+	H	40	ŀ	ŀ	ŀ	F	152	F	0.0
Flat Pro	ducte				_				-										
OS025	0.04	þ_	TYP	58	34	11	ŀ		4:	Ł	-	15	E	<u> </u>	Ŀ		23	11	0.0
	1	T		20	234	76	F	ŀ	4	Ŧ	ŀ	45	┡	┡	ŀ	Į.	159	76	O.0
H01	0.04	0_	TYP	66	38	30	-	<u> </u>	2	21	Ł	70	38	F		F	25		0,0
	h	Т	Т	20	262	207	- 1	-	2:	2:	Ŧ	70	36	ļ	Ŧ	F	172	1	0.5
HOO	0,04	D D	TYP	66	36	28	-		31	1(ī	80	25	F	Ŧ	Ŧ	25	F	0.0
	1			20	248	193	-		3	10	1	50	2.5	F	-	F	172	-	0.0
H10	0.04	b	TYP	68	57	53	1	-	4	62	Έ	95	64		Ŧ	Ī	29		0.0
	1	Т		20	393	365	-	-	4	Đ2	1	95	64	-	-	Ŧ	200	1	0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁸.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1981 F	1083 C
Melting Point - Solidus	1981 F	1083 C
Density	0.323 lb/in ³ at 68 F	8.94 gm/cm ³ @ 20 C
Specific Gravity	8.94	8.94
Electrical Resistivity	10.6 ohms-cmil/ft @ 68 F	1.76 microhm-cm @ 20 C
Electrical Conductivity*	98 %IACS @ 68 F	0.573 MegaSiemens/cm @ 20 C
Thermal Conductivity	223.0 Btu · ft/(hr · ft2.0F)at 68F	386.0 W/m · °K at 20 C
Coefficient of Thermal Expansion	9.4 ·10 ⁻⁶ per °F (68-212 F)	16.9 ·10 ⁻⁶ per °C (20-100 C)
Coefficient of Thermal Expansion	9.6 ·10 ⁻⁶ per °F (68-392 F)	17.3 ·10 ⁻⁶ per °C (20-200 C)
Coefficient of Thermal Expansion	9.8 ·10 ⁻⁶ per ^o F (68-572 F)	17.6 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.092 8tu/lb/°F at 68 F	393.5 J/kg · °K at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

[&]quot;Volume and weight basis.

Tempers Most Commonly Used

Flat Products	
PLATE	H00, OS050
SHEET	H00, H01, OS050
STRIP, ROLLE	DH00, H01, H04, H06, OS035, OS050

Other	
PIPE H04, H58, O60	
TUBE H04, H55, H58, H80,	O60, OS025, OS050

Typical Uses

Architecture

Flashing, Architectural Trim, Roofing

Electrical

Tubular Bus, Busbars (Welded or Brazed)

Industrial

Welded Tube, Tubing, Medical Gas-Oxygen, Conductors, Resistance Welding Equipment, Tubing, LP Gas Service

Other

Applications Requiring Welding or Brazing

printed 06/01/2011 11:04AM by Luttie.Boarman p. 63/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 5 of 5

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects LifeTM

http://www.copper.org/resources/properties/db/CDAP ropertiesResultServlet.jsp?action = search

6/23/2008

Tab C12200

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 5

Copper.ca

主境 奇式的过去分词形式 美罗普拉美国机构单位数主要领导 机砂 似似色细 增加指数

Search Results

C12200 (Phosphorus-Deoxidized, High Residual P)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu	Р
Min./Max.	99.9 min	.015040
Nominal	_	.02

Note: This includes oxygen-free Cu which contains P in an amount agreed upon.

Applicable Specifications

Product	Specification
Bands, Projectile Rotating	MILITARY MIL-B-18907, MIL-B-20292
Bar	ASME SB152, SB133 ASTM B187, B152 SAE J463, J461
Brazing Filler Metal	FEDERAL QQ-B-650
Fittings	ASME B16.29, B16.22
Nipples	ASTM B687
Pipe	ASME SB42 ASTM B42, B698
Pipe, Threadless (Seamless)	ASTM B302
Plate	ASME SB152 ASTM B152
Plate, Clad	ASTM B432
Rod	ASME SB133 SAE J463, J461
Shapes	ASTM B187 SAE J461, J463
Sheet	ASME SB152 ASTM B152 SAE J461, J463
Sheet, Building Construction	ASTM B370
Sheet, Clad	ASTM B506
Sheet, Lead Coated	ASTM B101
Strip	ASME SB152

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 5

	ASTM B152, B272
Out Dark Out of	SAE J463, J461
Strip, Building Construction	ASTM B370
Strip, Clad	ASTM B506
Tube	ASTM B698, B903
Tube, Capillary	ASTM B360
Tube, Coils	ASTM B743
Tube, Condenser	ASME SB111 ASTM B111
Tube, Drainage (DWV)	ASTM B306
Tube, Finned	ASME SB359 ASTM B359 MILITARY MIL-T-22214
Tube, Seamless	ASME SB75 ASTM B75, B641 MILITARY MIL-T-24107 SAE J461, J463
Tube, Seamless (Water)	ASTM B88
Tube, Seamless Bright Annealed	ASTM B68
Tube, Seamless for Air Conditioning and Refrigeration Field Service	ASTM B280 SAE J461, J463
Tube, Seamless for Torpedo Use	MILITARY MIL-T-3235
Tube, U-Bend	ASME SB395 ASTM B395
Tube, Welded	ASME SB543 ASTM B641, B447, B716, B543
Tube, Welded for Air Conditioning and Refrigeration Service	ASTM B640
Wire, Flat	ASTM B272

Common Fabrication Processes

Blanking, Coining, Coppersmithing, Drawing, Etching, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Forgeability Rating	65
Machinability Rating	20

Mechanical Properties (measured at room temperature, 68 F (20 C)

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 5

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength	Yleid Strength (0.5% ext. under load	Yield Strongth (0.2% offset)	Yield Strength (0.05% offset)	Ei	Ro Ha				Vickens Hard.	Bri Hai		Shear Strength	Fatigue Strength	izod Impaci Strength
	in.	×		F	ksi	ksí	ksi	ksi	*	3	c	F	DOT	500	500	3000	ksi	ksi	#45
	mm.			v	MPa	MPa	MPa	мРа	r	T	r	t	T		T		MPa	мРа	l .
Pipe						·			_	٠.	٠.	_	_		_	1	-		<u> </u>
H04	0.0	30	TYP	88	50	45	1	L	10	50	t	90	1	ļ —	Γ_	Į.	28	F	0.0
	0.0		_	20	345	310			-	50	•	-	_		Г		193		0.0
Flat Pro			ــــــ	<u> </u>			<u> </u>		_		<u> </u>		1		<u> </u>	<u> </u>		<u> </u>	-·• ·
H04	0.25	b	TYP	68	50	45	F	ļ	12	50	Ī	90	yl.		ī.	ī	28	F	0.0
	5.35			20	345	310	-	1	_	50	-	_	_		┡	t	193		0,0
M20	0.25	0	ΤΥΡ	68	32	10	-	-	50	_		40			┢		22		0.0
	6.35			20	221	69	<u> </u>		50	_	-	40	_				152		0.0
H02	0.04	0	ΤΫ́Ρ		12	36	_				١.	_	50	t	H	t	26	13	0.0
	7	Ì	· ·	20	290	248			_	_	•	-	50		Н		179	90	0.0
H04	0.94	0	TYP		50	45 45	L	 	10	-	-	-	357		┡	├	28	13	0.0
		F		20 20	345	310	 	Ι	_	50	-	-	157 157	lacksquare	F	f	_	90	
H01	1 2 E	-	-22				[-		_	1_		_	_	ľ	H	<u> </u>	193 26	ου	0.0
101	0.25	0	ΤΥP		38	30	<u> </u>			25		70	_		٢	-	25	-	0.0
	6.35	<u> </u>	****	20	252	207	<u> </u>	<u> </u>	_	25	-	70	-	<u> </u>	Ļ.	<u> </u>	172		0.0
H06	0.04	<u>e</u>	TYP		55	50	-	-	+	60	•	_	63	<u> </u>	₽	<u> </u>	29	14	0,0
	1	<u> </u>	_	20	370	345	-		4	60	-		83	<u> </u>	辶	_	200	97	0.0
H04	1	P	TYP	_	45	40	<u> </u>	·	-	45	-	8.		<u> </u>	Ł	<u> </u>	26		0.0
	25.4		L .	20	310	278	-	<u> </u>	_	45	_	35	_	-	<u> </u>	<u> </u>	179	<u>- </u>	0.0
H00	0.25	0	TYP	68	38	28	<u> </u>	<u> </u>	-	10	-	-	-		느	<u> </u>	25	-	0,0
	Б.35			20	248	193	-	<u> </u>	\$ 0	10	Ŀ	80	<u> </u>		-	-	172	-	0.0
OS050	0.25	C	TYP	68	32	10	٠	- "	50	Ŀ	ŀ	40	}		E	Ł	22	ŀ	0.0
	6.35	ł		20	221	69	ŀ	1	50	╁	ŀ	40	i	ŀ	┡	ŀ	152	-	0,0
Tube_																			
OS025	0.065	D	TYP	69	34	11	-	-	45	Ŀ	Ŀ	45	1		Ŀ	<u> </u>	23		0.0
	1.65	<u> </u>		20	234	76	- .	ŧ.	45	Ł	Ŀ	45	*	_	ŀ	Ι.	159	ŀ	0.0
H80	0.065	40	TYP	68	65	50	F	Ł.,	ð	60	E	96	63		E	F	29	19	0.0
	1.65	•		20	379	345	-	ŀ	θ	Ġû	ł	95	5 3	ŀ	┡	ŀ	200	131	0.0
H55	0.085	15	TYP	68	10	32	-	Ļ	25	35	Ē	77	45			-	26	14	0.0
	1.65			20	276	221	-		25	35	F	77	45	F	F		179	97	0.0
Flat Pro	ducts				t				۰	_		_				<u> </u>	·	•	<u>. </u>
M20	0.04	þ	TYP	68	34	10	-	-	45		E	46	1		F	-	23	-	0.0
	1	l ~	j	20	234	69	-	} <u> </u>	45	F	F	45	+	-	ŀ	-	159	-	0.0
OS050	0.04	0	тур	68	32	10	-	-	45	E	Ľ	40	1		Ŀ		22		0.0
	1			20	221	59		-	45	F	F	40	1	-	F	F	152	F	0.0
Tube										_	_	_			•				·
OS050	0.065	0	TYP	88	32	10	F	F	45	E	E	40	X_	- :	E	Ŀ	22	11	0.0
	1.65			20	221	69	-	-	45	F	F	40	-	-	F		152	76	0.0
Flat Pro	ducts								_	_	_	_	_		_				
OS025	G.04	0	TYP	68	34	11	F	E	45	Ē	E	45	L		E	Ė	23	11	0.0
l _ "	1	L	L	20	234	76	-	}	45	-	F	45	∤ ¯	-	F _	-	159	76	G.Q
H00	0.04	0	TYP	68	36	28	-	E					25		E	F_	25		ć.o
	1			20	248	193	<u> </u>	-					25		F	F	172		0.0
H01	0.04	0	ΤΥΡ		3B	30	-	ļ .					236		┢	┞	25		0.0
	1			20	262	207	F	1					36				172		0,0
H10	0.04	0	ΤΫ́P		57	53	_		_				64		⊨		29		0.0
	1			20	393	365	t		_	_	_	_	54			t	200		C.O
	·	<u> </u>	$ldsymbol{ldsymbol{\sqcup}}$	<u> </u>				<u> </u>	_	Ľ	Ĺ.	ľ	T'		<u> </u>		r.~		

^{*}Fatigue Strength: 100×10^{6} cycles, unless indicated as [N]X 10^{6} .

Physical Properties

	US Customary	Metric	
Melting Point - Liquidus	1981 F	1083 C	

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 5

Density	0.323 lb/in ³ at 68 F	8.94 gm/cm ³ @ 20 C
Specific Gravity		8.94
Electrical Resistivity	12.2 ohms-cmil/ft @ 68 F	2.03 microhm-cm @ 20 C
Electrical Conductivity		0.497 MegaSiernens/cm @ 20 C
Thermal Conductivity	196.0 Btu · ft/(hr · ft2-ºF)at 68F	
Coefficient of Thermal Expansion		16.9 ·10 ⁻⁶ per °C (20-100 C)
Coefficient of Thermal Expansion	9.5 ·10 ⁻⁶ per ^o F (68-392 F)	17.1 · 10 ⁻⁶ per °C (20-200 C)
Coefficient of Thermal Expansion	9.8 -10 ⁻⁶ per ^o F (68-572 F)	17.6 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.092 Btu/lb/ºF at 68 F	393.5 J/kg · °K at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Tempers Most Commonly Used

Flat Products	
PLATE	M20, OS050
SHEET	M20, OS050
STRIP, ROLLED	OS050

Other	
PIPE	H04
ROD	H04, OS050
TUBE	H55, H58, H80, OS025, OS050

Typical Uses

Architecture

Roofing, Flashing, Downspouts, Gutters

Automotive

Oil Lines, Air Lines, Hydraulic Lines

Building

Heater Lines, Gas Lines, Air Conditioner Tubes and Condenser Sheets, Heater Units, Oil Burner Tubes

Consumer

Refrigerators, Air Conditioners

Electrical

Wire Connectors, Heater Elements

Industrial

Gage Lines, Rotating Bands, Oil Lines in Airplanes, Hydraulic Lines in Airplanes, Gasoline Lines in Airplanes, Air Lines in Airplanes, Oil Coolers in Airplanes, Tanks, Water Lines, Steam Lines, Paper Lines, Pulp Lines, Distiller Tubes, Dairy Tubes, Heat Exchanger Tubes, Evaporator Tubes, Condenser Tubes, Brewery Tubes, Sugar House Refinery Lines, Print Rolls, Paper Rolls, Expansion Joint Tubes, Plating Hangers, Plumbing Tube, Plating Anodes, Plating Racks, Plating Anodes, Casting Molds, Tubing, LP Gas Service, Tubing, Medical Gas-Oxygen, Kettles, Anodes for Electroplating, Heat Exchanger Shells

Marine

Gasoline Lines, Oil Coolers

Plumbing

Plumbing Pipe, Plumbing Fittings

Start Another Search

DISCLAIMER:

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

printed 06/01/2011 11:04AM by Luttie.Boarman p. 69/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 5 of 5

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD. Copper Connects Life TH

http://www.copper.org/resources/properties/db/CDAP ropertiesResultServlet.jsp?action = search

6/23/2008

Tab C14500

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 4

Copperun

主转 あいけいは 金原体は 1955 温泉のかいの出版品 郷 小郎 75万 東部 新年 548

Search Results

C14500 (Tellurium-Bearing)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu ⁽¹⁾⁽²⁾	P	Te
Min./Max.	99.90 min	.004012	40-7
Nominal	99.50	.008	55

(1) Cu value includes Ag.

(2) Includes Te + P.

Note: Includes oxygen-free or deoxidized grades with deoxidizers (such as phosphorus, boron, lithium or others) in an amount agreed upon.

Applicable Specifications

Product	Specification
Bar	ASTM B301
Bar, Forging	ASTM B124
Brazing Filler Metal	FEDERAL QQ-B-650
Fittings	ASME B16.22
Forgings, Die	ASTM B283
Rod	ASTM B301 SAE J461, J463
Rod, Forging	ASTM B124
Shapes	ASTM B301
Shapes, Forging	ASTM B124
Shapes, Refinery	ASTM B216
Wire	ASTM B301

Common Fabrication Processes

Cold - Drawing, machining, moderate cold heading, Hot - Extrusion, forging (closed die only)

Fabrication Properties

Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Fair

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 4

Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Good
Capacity for Being Hot Formed	
Forgeability Rating	65
Machinability Rating	85

len)per	Section Size	Cold Work	Typ/ Min	Temp	Tensila Strength	Yield Strength (0.5% ext. under load)		Yield Strength (0.05% offset)	Ē	k.	oci ard	kw	0 \$\$	Vickens Hard.	Bri Hai	netl rd.	Shear Strength	Fatigue Strength	izod Impact Strengi
	in,	%		F	ksi	icsi	kal	ksi	*	F	ŀ	F	30T	500	500	3000	ksi	ksi	ft⊲b
	mm.			c	MPa	MPa	MPa	мра									МРа	MPa	ļ
₹od				Y									γ-	·	_	_	h.c	1	0.0
102	2	15	TYP	68	42	39	<u> </u>	<u> </u>	35	-	ŀ	ŀ	ŀ		Ł	ř-	25		+
	51	<u> </u>		20	290	269	<u> </u>	<u> </u>	35	1 —	L	L.	_	<u> </u>	L	<u> </u>	172		0.0
S015	0.5	<u> </u>	鱼	68	33	11	<u> </u>	-	46	•	•	22	_	-	┢	╄┯	22		0.0
	12.7			20	228	76	<u> </u>	<u> </u>	46	_		43	_		F	<u>; </u>	152	<u> </u>	0.0
100	0.5	6	TYP	88	38	30		İ	-	-	ŧ	ŀ	44	-	H	-	25		0.0
	12.7	<u> </u>	<u> </u>	20	262	207	<u> </u>	<u> </u>	26	36	ł	L	44		r	<u> </u>	172	<u> </u>	0.0
VIre	1 0.00	L	byc	le e	he	ho		_	ho		•	_	Т		•	T	25	Г	0.0
100	0.08	0	TYP	68	38	30			20 20	-	ŧ	F	F	[╄	f	172		0.0
	<u> </u>	<u> </u>	<u> </u>	20	262	207	r	<u> </u>	۲	1	ŀ	ţ	<u>t_</u>	<u> </u>	ľ	<u>l</u>	1172	<u> </u>	I ^{3.0}
10d	0.5	75	TYP	la o	48	44	I.	T .	l s	46	ī	τ	t	L	_	_	27	Į.	0.0
104		35	1119	68		303	F		15	t	1	f	ſ	f —	f	ſ	186	 	0.0
100	12.7	20	TYP	20	331	D03	├		_	_	╁	F	₽	F	₽	╌	26		0.0
102	0.25	20	1 41	58					•	-	•	-	₽	F	╀	╌	179		0.0
100	6,35		51.414	20	<u> </u>	<u> </u>		•	_	43	1	Ļ	╄		ŀ	 	11/8		0.0
102	.25	0	SMIN	•	38	30	† 	-	12	-	÷	ŀ	١	ŧ	╄	╄	f —		0.0
	6.35	<u> </u>		20	260	205	<u> </u>	<u> </u>	12	_	Ļ	ŧ.	<u> </u>	 	ļ.	<u> </u>	<u></u>	<u> </u>	0.0
D\$050		C	TYP	68	32	10	 	╌	S	-	-	40	-	┡	╄	╄	22		+
	25.4	<u> </u>	<u> </u>	20	221	69	<u> </u>	<u> </u>	60 2	_	1	40	-	<u> </u>	1	<u> </u>	152	<u> </u>	0.0
104	1	35	ΪΫΡ	68	48	44	} 	 	1	Т	Ŧ	ŀ	÷	 	╀	!	27		0.0
	25,4	辶	<u> </u>	20	331	303	<u> </u>		Ľ	_	_	Ļ	Ł	<u> </u>	Ļ	上	186	<u> </u>	0.0
H02	0.5	20	TYP	68	43	40	<u> </u>	! 	2.5	•	•	•	50	! 	╄	╄	25	-	0.0
	127	_	ļ	20	296	276	<u> </u>	<u> </u>	20	1	Ł	Ļ.	50	ᆣ	<u></u>	╄	179	<u> </u>	0.0
102	0.25	20	SMin	_	38	40	<u> </u>	<u> </u>	Ė	Ł	ŧ	ŀ	Ł	<u> </u>	╄	╄	<u> </u>	<u> </u>	0,0
	6.35	L		20	296	276	<u> </u>	<u> </u>	-	Ŀ	ŀ	ŀ	ŀ	<u>t</u>	٠	r	<u> </u>	-	0.0
Tube	L	1			T. a	L.			La.	J.,	-T	_			_		b.		lo o
H55	0.065	15	ТҮР	68	40	32	 	 	-	r	-	÷	Ł	ŧ –	╌	١	24		0.0 0.0
	1.65		L	20	278	721	<u> </u>	<u> </u>	Ľ	þ.	1	Ľ.	<u>t</u>	<u>t </u>	ŀ.	<u>t</u> .	165	<u> </u>	0.0
Rod	L	20	TYP	88	42	40	1		h	k:	1	Τ.	1	1	1	1	25		0.0
102	1	20	1177	20	290	1	[2	7	т	f	╀╴	-	┲		172		0.0
40	25.4	Ц.,,	ᆫ	kν	290	276	<u>t</u>	<u> </u>	Ε.	7	4	r	<u>t</u>	<u>r .</u>	<u> </u>		172	ŗ	P.0
Mire OS035	has	0	TYP	68	D3	11	L	L	Ια	1	τ	τ	E	L	τ	τ	22	Ε'	0.0
J.5035	2	f	' ''	20	228	76	1	t	di.	•	t	f	t	t	ť	t	152	t	0.9
104		0	770			51	[[5	F	f	f	₽	[₽	£	30	\vdash	0.0
104	0.03 2	۳	TYP	65 20	56 205	• 		[ľ	f	f	f	f	$\overline{}$	f	ſ	207	[0,3
1-7	۲	1	<u>1 </u>	Κ ₀	385	352	<u></u>		۲	L	Ţ	Ţ.	<u>r</u> _	Г	<u>. </u>	<u> </u>	Fu,	Γ	Γ'.υ
रेवर्व 102	.0625	0	SMI	16P	36	30	τ	τ	Б	Т	Ţ	τ	Ţ	I.	Ţ	Į.	Į.	<u> </u>	0.0
102	1.6	ť	2/4/1	20	260	205	! 	t	Ŀ	t	t	t	t	[t	1	1		0.0
104	0.25	45	ΤΫ́Р	68	53	49	ľ –	[_	54	ł	ŧ	╁	Ł	t	t	29	L —	0.0
104	3.35	7,2	ייז ו	-	365	338			1,0	-	•	f	f	[f	f -	200	[0.0
	P.J3	1	Щ.	20	1203	ည္မ	<u>r</u>	Г	Ľ	1.	1	Γ.	Γ	<u>r </u>	<u>r</u>	<u> </u>	1200		נייט
Vire i02	0.62	c	ŤΥΡ		51	I 41	т	τ -	T-	Ļ	_				_	· · · ·	27	т	0.0

http://www.copper.org/resources/properties/db/CDAP ropertiesResultServlet.jsp?action=search

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 4

	2		<u> </u>	20	352	283	ŀ	Ŀ.	6 F	HH	ŀ	ŀ	ŀ	186	┡	0.0
Tube_																
OS050	0.065	0	TΥΡ	68	32	10	F		40	- 10	E	-	ŀ	22	-	0.0
	1.65			20	221	89	-	<u>-</u>	40-	40	<u> </u>	-	Ŀ	152		0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1976 F	1080 C
Melting Point - Solidus	1924 F	1051 C
Density	0.323 lb/in ³ at 68 F	8.94 gm/cm ³ @ 20 C
Specific Gravity	8.94	8.94
Electrical Resistivity	11.2 ohms-cmil/ft @ 68 F	1.86 microhm-cm @ 20 C
Electrical Conductivity	93 %IACS @ 68 F	0.544 MegaSiemens/cm @ 20 C
Thermal Conductivity	205.0 Btu · ft/(hr · ft2.ºF)at 68f	354.8 W/m · °K at 20 C
Coefficient of Thermal Expansion	19.5 ·10 ⁻⁶ per ⁰F (68-212 F)	17.1 -10 ⁻⁶ per °C (20-100 C)
Coefficient of Thermal Expansion	9.7 ·10 ⁻⁶ per °F (68-392 F)	17.5 ·10 ⁻⁸ per °C (20-200 C)
Coefficient of Thermal Expansion	19.9 ·10 ⁻⁶ per ⁰F (68-572 F)	17.8 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.092 Btu/lb/ºF at 68 F	393.5 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Tempers Most Commonly Used

Flat Products BAR, DRAWNH02

Other		".	
ROD	H00, H01, H02, H	104, OS015, OS035, OS05	0
TUBE	H55, H58, O60	·	
WIRE	H00, H01, H02, H	104, OS035	

Typical Uses

Architecture

Fire Protection

Electrical

Transistor Bases, Electrical Connectors, Motor Parts, Switch Parts, Soldering Copper

Industrial

Furnace Brazed Articles, Soldering Tips, Welding Torch Tips, Screw Machine Products, Forgings

Plumbing

Plumbing Fittings, Sprinkler Heads, Fixtures

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

printed 06/01/2011 11:04AM by Luttie.Boarman p. 74/361 Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4 specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association, LTD.</u>
Copper Connects Life™

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3

Copper.os

Search Results

C14510 (Tellurium-Bearing)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	,	Pb		Te
Min/Max.	99.85 min	.05	.010030	.307
Nominal	99.50	-	020	.50

- (1) Cu value includes Ag.
- (2) Includes Te +P.

Applicable Specifications

Product	Specification
Bar	ASTM B301
Rod	ASTM B301
Shapes	ASTM B301
Wire	ASTM B301

Common Fabrication Processes

Cold - Drawing, machining, moderate cold heading, Hot - Extrusion, forging (closed die only)

Fabrication Properties

raprication Properties	
Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Good
Capacity for Being Hot Formed	
Forgeability Rating	65
Machinability Rating	85

	Section					Sured at Yield Strength (0.6% ext. ender load)	Yield Strength (0.2%		EΙ	Ri Hi	oc ar			Vickens	Bri: Har	neli d.	Shear Strength	Fatigee Strength	izod Impact Strengti
	n,	₩		F	ksi	ksi	ksi	ksi	} :	Þ	ķ	¥F	307	500	200	3000	ksi	ksi	it-ib
	mm.			c	MPa	MPa	MPs	MPa	Г	T	t	T			T		MPa	MPa	J
Rod								•		•	_	-		-	•		<u> </u>		
H02	2	15	TΥP	S8	42	39	-	E	30	42	Ŧ	F.,	F.,	-	ŀ	ŀ	25	F	0.0
	51			20	290	269	-		35	42	Ţ	F	-	-	F	F	172		0.0
OS015	0.5	0	TYP	88	33	11			46	ļ.	ţ.	43	1		┢	—	22		0.0
	12.7			20	228	78			46	•	t	43	_	-	F		152	-	0.0
100	0.5	6	TYP	58	38	30			26		t	t	44		┢	┢	25		0.0
	12.7			20	262	207		_	_	J.	۰	t	44		┖		172		0.0
Wire						F					1	<u> </u>	Ι''		<u> </u>	<u> </u>	,,,_		7.0
HOO	0.68	b i	TYP	60	38	30	L		20	Ţ.	F	F	F	Į.	L		25		0.0
	2			20	262	207			20	-	t	F	F		L		172		0.0
Rod										_	_	_	_						
H04	0.5	35	TYP	66	48	44			15	48	ŀ	F	F	F	F		27	-	0.0
	12.7			20	331	303			15	•	•	r	F				186		0.0
H02	0.25	20	TYP	55	43	40		_		43	4	t	┢		L		28		0.0
	6.35			20	298	276			_	Æ:	-	t	F				179		0.0
OS050	1	Ô	ΥÝΡ	66	32	10	-		50	1	1	40	_	<u> </u>	Ł		22		0.0
	25.4			20	221	69			50	-	t	40	_		Ħ	_	152		0.0
H04	1	35	ΤΥΡ		48	44			_	48	F		₽		F	<u> </u>	27		0.0
,,,,,	25.4	<u> </u>	,	20	331	303				-	٠	+-	-	F	╌		18 6		-:-
H02	0.5	20	TYP		43	40			J	46	_	-	<u> </u>	Ī	Ι.				0.0
102	12.7	<u> </u>	, , ,		296				_	43	٠	ŀ	50		H	_	28		0.0
	12.1			20	X ALC	276			20	43	Ľ,	L	50		<u> </u>		179		0.0
Tube H55	0.065	15	TYP	RO	40	32 (20	35	T	_	_		_		ha l		h.,
1100	1.65	,,,		20	276	221		_	_	•	F	F	H		┝	—	24		0.0
D-4	1.03		1	zu	KI.O	221			20	3:	Ĺ	<u>I</u>	_	<u> </u>	<u> </u>	*	165		0.0
Rod H02	1	20	TYP		42	40			26	42	ı	_					- I	, ;	10.0
102	25.4	-	, ,,	20	290	276	_	-			F	F	-		┡	-	25		0.0
Wire	23.4		L	κυ	290	216	<u> </u>	<u> </u>	25	12	Ł	<u> </u>	<u> </u>	<u>t</u>	Ł	Ш	172		0.0
OS035	0.08	О	ΤΥP	68	33	11			40	_	т	_	_	·			22	i	0.0
00000	2	۳-	7 7 1	20	228	76	<u> </u>		40	F	F	F	H		┡	-	_	-	0.0
H04	0.08	0	TYP		56	51			$\mathbf{-}$	Ĺ	۲	Ľ	Ľ		L	_	152	-	0,0
104		_	117	20	386			-	3	-	ŧ	┡	! -		Ι		30		0.0
Died.	2	Щ	لــا	20	Nap	352	•	·	3	Ļ	Ŀ	L	<u> </u>	<u> </u>	ш	لــــا	207		0.0
Rod H04	0.25	45	TYP	ka	53	49			- ~	54	1		_			,	ng.		3.0
	6.35	• -		20	365	338			I	2	F	┡			Н		29		0.0
Mileo	تن	ـــا	لــــا	۲۷	<i>200</i>	030			łO	Ρ4	Ŀ	Ľ.	<u> </u>	<u> </u>	Ľ	لبا	200		0.0
Wire H02	90.0	0	TYP	ć c	51	41			6	_	_		_		_	_	49		<u> </u>
	2	Н		20	352	283			6	F	F	F			H	-	27	-	0.0
Turb -	<u> </u>			۳۷	აა∠	∠სპ			2	L	Ĺ	L		r .	Щ.		186	-	0.0
Tube OS050	0.066	G	TYP	en	22	40		,		-	÷	46	_		_	_	00	1	
U-040U	4.65		117	5B 2G	32	10			40			40			ŀ	-	22	-	0.0

^{*}Fatigue Strength: 100 x 10 6 cycles, unless indicated as [N]X 10 6 .

Physical Properties

	US Customary	Metric		
Melting Point - Liquidus	1967 F	1075 C		
Melting Point - Solidus	1924 F	1051 C		
Density	0.323 lb/in ³ at 68 F	8.94 gm/cm ³ @ 20 C		
Specific Gravity	8.94	8.94		
Thermal Conductivity	205.0 Btu · ft/(hr · ft2.ºF)at 68F	354.8 W/m · °K at 20 C		
		1		

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Coefficient of Thermal Expansion	9.5 · 10 ⁻⁶ per °F (68-212 F) _	17.1 ·10 ⁻⁶ per ^o C (20-100 C)
Coefficient of Thermal Expansion	9.7 ·10 ⁻⁸ per °F (68-392 F)	17.5 ·10 ⁻⁸ per °C (20-200 C)
Coefficient of Thermal Expansion	9.9 ·10 ⁻⁸ per °F (68-572 F)	17.8 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.092 Btu/lb/ºF at 68 F	393.5 J/kg · °K at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Tempers Most Commonly Used

Flat Products BAR, DRAWNH02

Other				•			
ROD	H00,	H01,	H02,	H04,	OS015,	OS035,	OS050
TÜBE	Ĥ55,	H58,	O60				
WIRE	H00,	H01,	H02,	H04,	OS035		

Typical Uses

Architecture

Fire Protection

Electrical

Soldering Copper, Transistor Bases, Switch Parts, Motor Parts, Electrical Connectors

Furnace Brazed Articles, Welding Torch Tips, Forgings, Screw Machine Products

Plumbing

Plumbing Fittings, Sprinkler Heads

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD.

Copper Connects Life™

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3

Copperas

工程 美国美国共和国联系 美洲 机冷吸液压塞剂 链球 机砂板纸 医静脉脉冲 非特殊

Search Results

C19400

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu	Fe	Рb	P	Zn
Min./Max.	97.0 min	2.1-2.6	.03	.01515	.0520
Nominal	97.4	2.4	-	04	.13

Applicable Specifications

Product	Specification
Bar, Rolled	ASTM B465
Plate	ASTM B465
Sheet	ASTM B465, B694
Strip	ASTM B465, B888, B694
Tube, Welded	ASME SB543
<u> </u>	ASTM B543

Common Fabrication Processes

Blanking, Coining, Coppersmithing, Drawing, Etching, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Forgeability Rating	65
Machinability Rating	20

n. n. mm.	`	Cold Work	Typ⊻ Mān	Temp	Tensile S tre ngth	Yfeld Strength (0.6% ext. under load)	Yield Strength (0.2% offset)	Yield Strength (0.05% offset)	ĔΙ	Ro Ha	ck rd	we nes	il •	Vickens Hard.	Brti Har		Shear Strength	Fatigu s Strength*	tzod Impact Strengti
mm. Flat Products H14	┪	36		ļ.,	ksi	kei	ksi	ksi	×		d	FBı	न	500	500	3000	kai	kai	it-lib
Fiat Products H14 0.04 1 Tube WM02 0.035 0.89 C60 0.035 0.89 Fiat Products H08 0.04 1 Tube WM06 0.035 0.89 Fiat Products H04 0.04 1 H05 0.04 1 H06 0.04 1 C50 0.025 0.64 C60 0.025 0.64 Tube U050 0.035 0.89 Fiat Products H14 0.04 1 Tube H80 0.035 0.89 Fiat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	┪		-	c	MPa	MPs	MPa	MPa	Ë	Н	H	+			H	F	MPa	MPa	,
H14 0.04 H12 0.04 H12 0.04 H12 0.04 H12 0.035 0.89 C60 0.035 0.89 C60 0.035 Flat Products H06 0.04 H07 0.04 H07 0.04 H08 0.04 H09 0.04 H09 0.04 H09 0.04 H09 0.05 H09			L	٢	411 4	Mr B	m, -	ole &		Ш	Ц	Т.	J		L .	L	nvir a	NAL EL	<u> </u>
H02		0	MIN	68	Į,		73		-		Ţ	- 7.	3		_	<u> </u>			0.0
1 Tube	寸			20			503		F	Ħ	H	7			┢				0.0
WM02 0.035 0.89 0.89 Flat Products H08 0.04 1 Tube WM08 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 0.04 1 0.00 0.025 0.64 0.00 0.025 0.64 0.00 0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube UM08 0.035 0.89 Flat Products H14 0.04 1 Tube UM08 0.035 0.89 Flat Products H14 0.04 1 Tube UM08 0.035 0.89 H09 0.035	_	0	ΤΥP		60	50	53		9	38	H	- 30	-		┝	┝			00
WM02 0.035 0.89 0.89 Flat Products H08 0.04 1 Tube WM08 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 0.04 1 0.00 0.025 0.64 0.00 0.025 0.64 0.00 0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube UM08 0.035 0.89 Flat Products H14 0.04 1 Tube UM08 0.035 0.89 Flat Products H14 0.04 1 Tube UM08 0.035 0.89 H09 0.035	T			20	414	345	385		_	_	-	8	_		Γ	į.			0.0
WM02 0.035 0.89 C60 0.035 Flat Products H06 0.035 0.89 Flat Products 0.89 Flat Products H04 0.035 0.89 Flat Products H04 0.04 1 C50 0.025 0.64 C60 0.025 0.64 Tube U7ube			_			•					ш	_			_				
O80 0.035 D89 Flat Producta H08 0.04 1 Tube WM06 0.035 D89 WM04 0.035 D89 Flat Producta H04 0.04 1 C50 0.025 C64 Tube O50 0.035 H02 0.035 H02 0.035 H14 0.04 1 Tube H90 0.035 D89 WM110 0.035	5	6	TYP	88	58	-	53	ŀ	G.	61		ß	5		F	F	-	ŀ	0.0
0.89 Flat Products H06 0.04 1 Tube WM06 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 C50 0.025 0.64 Tube 050 0.035 0.89 H02 0.035 H02 0.035 H14 0.04 1 Tube H00 0.035 U.89 H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035				20	4G0	-	365		9	61	П	-	2		Ļ	-		-	0.0
Fist Products H06 0.04 1 Tube WM06 0.035 0.89 WM04 0.035 0.89 Fist Products H04 0.04 1 C050 0.025 0.64 C060 0.025 0.64 Tube 0.035 0.89 Fist Products H14 0.04 1 Tube H90 0.035 0.89 WM10 0.035	5	0	ΤΥP	68	45		24	·		33	Ħ	†		-	Г	-		-	0.0
H06 0.04 Tube WM06 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 C50 0.025 0.64 Tube 050 0.035 0.89 Flat Products H04 0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube H90 0.035 0.89 WM10 0.035				20	310	-	165	_	28	3£	П	Ţ		-	-	F	-	-	0.0
1 Tube WM96 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 0.04 1 0.050 0.025 0.64 Tube 050 0.035 0.89 Flat Products H14 0.04 1 Tube H90 0.035 0.89 WM10 0.035	3					·					_		_		L	L		L	<u></u>
WM06 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 H06 0.04 1 C50 0.025 0.64 C60 0.035 0.89 H02 0.035 H02 0.035 H14 0.04 1 Tube H00 0.035 0.89 WM10 0.035		O.	TYP	68	70	-	68		3	74	E	- 7	1	-	Ŀ	F	-	-	0.0
WMD6 0.035 0.89 WM04 0.035 0.89 Flat Products H04 0.04 1 H05 0.04 0.64 0.64 0.64 0.64 0.050 0.035 0.89 Flat Products H14 0.04 1 Tube H90 0.035 0.89 WM10 0.035	I			20	183	-	465	F	3	74	ŀ	- 7	,	,	-	-		ŀ	0.0
0.89 WM04 0.035 Plat Products H04 0.04 1 H05 0.025 0.64 C060 0.025 0.64 Tube C050 0.035 0.89 Flat Products H14 0.04 1 Tube H00 0.035 0.89 WM10 0.035											_								P-1
MM04 0.035 Plat Products H04 0.04 1 H06 0.025 0.64 C060 0.025 0.64 Tube C050 0.035 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	5	0	TYP	_	70		δB	•	_	74	Ц	- lô	1	-	Ŀ	<u> </u>	-	-	0.0
0.89 Flat Products H04	+			20	483	-	465		3	74	Ł	6	٠.	1	Ш		·		0.0
Flat Products H04 0.04 1 H05 0.04 1 C050 0.025 0.64 C060 0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube H00 0.035 0.89 WM10 0.035	5	0	ΤYΡ	68	B5		63		4	73	Ц	- 64	3		Ĺ	Ŀ			0.0
H04 0.04 H05 0.04 H06 0.025 0.64 C050 0.025 0.64 Tube C050 0.035 0.89 Flet Products H14 0.04 1 Tube H00 0.035 0.89 WM10 0.035	1			20	448	<u> </u>	434	·	4	73	Ł	- 81	3			•	-	,	0.0
1 H06 0.04 1 C50 0.025 0.64 C80 0.025 0.64 Tube C50 0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89	_	,	_		·		,				_	_	_						
1 050 0.025 0.64 0.64 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035	_	6	TΥP		67	<u> </u>	63	<u> </u>	4		_	Þ	-		Ŀ	┝	-	21	0.0
1 050 0.025 0.64 0.64 0.035 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035 0.89 0.035	_		<u> </u>	20	462	<u> </u>	434	,	*	73		_			_	<u> </u>	-	145	0.0
0.64 O60 0.025 0.64 Tube O50 0.035 0.89 H02 0.635 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	_	9	ΤΫ́Р		73	<u> </u>	71	·	₹.	75	н	- 7.	-		_	-		22	0.0
0.64 O60 0.025 0.64 Tube O50 0.035 0.89 H02 0.635 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035			<u> </u>	20	503		486	-	Ł	75		7.	2		_	ш	-	148	0.0
O60 0.025 0.64 Tube O50 0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	_	0	ΤΥP	•	50	<u> </u>	30	<u> </u>	22	Ĝ	_	ŧ	4		<u> </u>	┡	<u></u>	-	0.0
0.64 Tube O50 0.035 0.89 H02 0.635 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035				20	345	-	207	•	29	45	Ł	·ŀ			٠.	Ł.	t.	·	0.0
Tube O50 0.035 0.89 H02 0.035 0.89 Flet Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	5		TYP		45	ŀ	24		32	38	Ц	Ł			L	Ŀ		16	0.0
0.035 0.89 H02 0.035 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	1			20	310	-	185	·	32	38	ŀ	ŀ		-	Ł			110	0.0
0.89 H02 0.635 0.89 Flat Products H14 0.04 1 Tubs H80 0.035 0.89 WM10 0.035	_					-			_		_	_	_						
H02 0.035 0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	_	0	ΥP		50	-	30		_	45		╪	4		⊨	ļ			0.0
0.89 Flat Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035				20	345	<u> </u>	207	<u> </u>		45		_			<u> </u>	<u> </u>			0.0
Flet Products H14 0.04 1 Tube H80 0.035 0.89 WM10 0.035	${}$		TYP	_	58	<u> </u>	55	<u> </u>		5	Ц	8		-	▙	┝			0.0
H14 0.04 1 Tube H80 0.035 0.89	_	<u> </u>		20	400	-	379	<u> </u>	9	61	Ł	Ĝ	ן נ	-	-				0.0
1 Tube H80 0.035 0.89 VVM10 0.035					τ				_	-		_							
H90 0.035 0.89 WM10 0.035	-	c	TYP	_	80	-	<u> </u>		1	H	H	ŧ	4		H	┡	•	-	0.0
H90 0.035 0.89 WM10 0.035			Ц_	20	552	<u>t. </u>	<u> </u>	-	1	L	H	<u>†</u>		-	<u> </u>	<u> </u>	•		0.0
0.89 WM10 0.035	E	35	TYP	e c	89	1	66		5		т	h.			_	_			0.0
WM10 0.035	_	30	1 7 6	20 20	469		96 455		_		_	6			H	H	-	•	0.0
			77/0						_			5		1	_				
	_	0	TYP	_	76		73 500		1		7	. 3:		_	H	H		•	0.0
	_	0	T-77	20	524		503		1	7E		Ĝ:			Ï	H		•	0.0
VAA08 0.035	_	`	ŢΥΡ		73		71		ત્યી (_	H	5	_		-				0.0
0,89		Щ.	Ц.	20	503	<u> </u>	486		2	75	Ц	ĥ	<u>'</u>	<u> </u>	<u> </u>	ــــــــا	t		0.0
Flat Products H10 0.04			TYP	gg	76	L	73		7	77	П	7.	,			,	_	2 1	0.0
1 10 0.04		o i				_	mr J	~						_	r	r	_	K.I	μ.υ

^{*}Fatigue Strength: 100 x 10 6 cycles, unless indicated as [N]X 10 8 .

Physical Properties

	US Customary	Metric	
Melting Point - Liquidus	1990 F	1088 C	
Melting Point - Solidus	1980 F	1082 C	

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Density	0.322 lb/in ³ at 68 F	8.91 gm/cm ³ @ 20 C
Specific Gravity	8.91	8.91
Electrical Resistivity	15.0 ohms-cmil/ft @ 68 F	2.49 microhm-cm @ 20 C
Electrical Conductivity	65 %IACS @ 68 F	0.38 MegaSiemens/cm @ 20 C
Thermal Conductivity	150.0 Btu · ft/(hr · ft2-°F)at 68f	259.6 W/m - °K at 20 C
Coefficient of Thermal Expansion	9.8 ·10 ⁻⁶ per °F (68-572 F)	17.6 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.092 Btu/lb/ºF at 68 F	385.5 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension	17500 ksi	121000 MPa
Modulus of Rigidity	6600 ksi	45510 MPa

Tempers Most Commonly Used

Flat Products							
STRIP, ROLLED	H02. H04	. H06	, H08,	H10,	O50,	O50,	OTHER

Other			**	
TUBE H02	, H04, H06	, H08, H10,	H55, H80,	O50, O60

Typical Uses

Automotive

Electrical Connectors - Automotive, Fuel Injectors

Consumer

Gift Hollow Ware

Electrical

Lead Frames, Electrical Connectors, Cable Wrap, Clamps, Plug Contacts, Fuse Clips, Terminals, Circuit Breaker Components, Contact Springs, Electrical Springs

Fasteners

Rivets

Industrial

Eyelets, Welded Condenser Tubes, Gaskets, Flexible Metal Hose

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD.

Copper Connects LifeTM

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3

Copperom

Search Results

C21000 (Gilding, 95%)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu Cu	Fe	Pb	Zπ
Min./Max.	94.0-96.0	05	05	Rem.
Nominal	95.0			5.0

Note: Cu + Sum of Named Elements, 99.8% min.

Applicable Specifications

Product	Specification
Bar	ASTM B36 SAE J463, J461
Plate	ASTM B36
Sheet	ASTM B36 SAE J463, J461
Strip	ASTM B36 SAE J463, J461
Tube, Welded	ASTM B587
Wire	ASTM B134

Common Fabrication Processes

Blanking, Coining, Drawing, Etching, Forming and Bending, Piercing and Punching, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Good
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Work	ed Excellent

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

Capacity for Being Hot Formed	Good
Machinability Rating	20

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength	Yield Strength (0.5% ext. under load)		Ylekd Strength (0,65% offset)	EI	Ri X	DC arc	kwi ine	eli 55	Vickens Hard.	8ri Hai		Shear Strength	Fatigue Strength	izod Impact Strengt
	in.	**		F	ksi	ksi	ksi	ksi	Ж	В	¢	F	301	500	500	3000	ksi	ksi	R⊣b
	mm,			Ç	мРа	мра	MPa	MPa			I						MPs	MPa	J
Flat Pro	ducts											_	_		•				
OS015	0.04	o ¯	TYP	68	38	14	-		42	F	E	60	15	-	-	-	30	Ë	0.0
	1		[20	262	97	-	-	42	ŀ	F	60	15	-	-	F	207	-	0.0
H02	0.04	O	TYP	68	48	40	-	-	12	52	E	Е	54	-		-	34		0.0
	1			20	331	276	-	-	12	52	Ŧ	Г	54	ļ.,	F	F	234	-	0.0
O\$035	0.04	0	ΤΥP	68	35	11	E		45	F.	Ė	52	4		-	F	2 a	-	0.0
	1			20	241	78	F	•	45	F	F	52	4	ļ .	F	-	193	-	0.0
H06	0.04	0	TYP	68	81	55			*	70	ŧ	Г	54			-	39		0.0
	1			20	421	379	-	-	4	70	Ŧ	F	64	ļ.	F	-	269	-	0.0
H04	0.04	0	ΤYΡ	68	56	50	F		5	64	F	E	60	-	F	F	37		0,0
	1		ł	20	386	345	ļ -		5	64	Į	ŀ	60			-	255	_	0.0
BÖH	0.04	C	TYP	68	64	58	E		;	72	Ė	E	66				40		0.0
	1			20	441	400	F	-	4	73	F	F	66	-	Γ	F	276	-	0.0
Q8050	0.04	0	TYP	66	34	10	F	-	45	Ŀ	ŧ	46	-	-		F			0.0
	1			20	234	69	-		45	F	F	46		-	F	F	-	-	0.0
UA4	N A 4	h	77/25	P-0	40	22	1		L.	۱.,	+	t	-		_	1	20	1	

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1950 F	1066 C
Melting Point - Solidus	1920 F	1049 C
Density	0.32 lb/in ³ at 68 F	8.86 gm/cm ³ @ 20 C
Specific Gravity	8.86	8.86
Electrical Resistivity	18.5 ohms-cmil/ft @ 68 F	3.08 microhm-cm @ 20 C
Electrical Conductivity	56 %IACS @ 68 F	0.328 MegaSiemens/cm @ 20 C
Thermal Conductivity	135.0 Btu · ft/(hr · ft2-°F)at 68F	233.6 W/m ⋅ °K at 20 C
Coefficient of Thermal Expansion	10.0 ·10 ⁻⁸ per °F (68-572 F)	18.0 ·10 ⁻⁶ per ^a C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg - °K at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Tempers Most Commonly Used

Flat Products STRIP, ROLLED H01, H02, H04, H06, H08, OS015, OS035, OS050

Other TUBEH55, H58, H80, O50, O60, OS035 WRE OS015, OS025, OS035, OS050

Typical Uses

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Architecture

Ornamental Trim

Consumer

Jewelry, Plaques, Medallions, Emblems

Electrical

Rotor Bars, AC Motors, Connectors

Fasteners

Fasteners

Industrial

Base for Vitreous Enamel, Base for Gold Plate

Fuse Caps, Firing Pin Support Shells, Bullet Jackets, Primers, Small Arm Ammunition: Primer Caps, Bullet Jackets

Other

Medals, Coins, Tokens

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association</u>, <u>LTD</u>.

Copper Connects Life™

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 4

Copperac

其地 此一篇化转音声电影 納馬馬利爾馬利地 唇毛外肌 相望 表外语 音音和

Search Results

C22000 (Commercial Bronze, 90%)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu	e	Pb	Zn
Min./Max.	89.0-91.0	.05	.05	Rem.
Nominal	90.0	,		10.0

Note: Cu + Sum of Named Elements, 99.8% min.

Applicable Specifications

Product	Specification
Bands, Projectile Rotating	MILITARY MIL-B-20292, MIL-B-18907
Bar	ASTM B36 SAE J461, J463
Cups, Bullet Jacket	ASTM B131 MILITARY MIL-C-3383
Plate	ASTM B36
Sheet	ASTM B36, B694 SAE J463, J461
Strip	ASTM B694, B36, B130 SAE J461, J463
Tube	ASTM B135 SAE J461, J463
Tube, Rectangular Waveguid	e ASTM B372 MILITARY MIL-W-85
Tube, Welded	ASTM B587
Wire	ASTM B134
Wire, Metallizing	MILITARY MIL-W-6712

Common Fabrication Processes

Blanking, Coining, Drawing, Etching, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 4

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Good
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	
Capacity for Being Hot Formed	Good
Machinability Rating	20

Temper				Temp	1	Yield Strength (0,6% ext. under load)	Yield Strength 10.2%	Yield								rell d.	Shear Strength	Fatigue Strength	izod impact Strengti
	n.	¥₁		ᄕ	ksi	ksi	ksi	ksi	Ŕ	В	þ	=	301	500	500	3000	kal	kal	lt-Ib
	mm			υ	MРa	MPa	MPa	MPa			П						MPa	MPu	J
Wire																			
H06	0.08	٥	Ϋ́Р		83	<u> </u>	<u> </u>	<u> </u>	2	Ŀ	H	_	_	<u> </u>	Ŀ	<u>-</u>	<u> </u>	<u> </u>	0.0
	2	L		2D	572	<u> </u>	<u> </u>	<u> </u>	3	Ŀ	ŀŀ		-	<u> </u>	-	-	<u> </u>	•	0.0
Tube					G E				_			٠,				_			
H80	0.0	35	ŢΥP		60	53		-	5	66	H	_	62		Ŀ	<u> </u>	<u> </u>		0.0
	0.0			20	414	385	<u> </u>	<u> </u>	6	39	<u>t</u>		€2	t	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0.0
Flat Pro		-	EVE I		10.7	Ca.			40	_	Α.	1				_			h.a.
M20	0.25	P	TYP		37	10		-	45	i-	H				H	<u> </u>	<u> </u>	-	0,0
	8.35		<u> </u>	20	255	69	<u> </u>	<u> </u>	45	Ľ.	4		28		Ŀ	<u> </u>	<u> </u>		0.0
H02	0.25	<u> </u>	TYP		52	45	-		_	56	_	4	•	<u> </u>	F	├	35	•	0.0
22547	6.35			20	359	310				88					<u> </u>	<u> </u>	241		Ċ.O
OS015	0.04	0	ΤΥP		41	15	-	_	42	Ŀ	H	-1		-	┡	┝	32		0.0
	1			20	283	103	<u> </u>		4 Z	_	_	4			<u> </u>	<u> </u>	221		0.0
H02	0.04	0	ΤΥΡ		52	45	<u> </u>	_	11	-	H	-	56		Ŀ	┝	35	<u>- </u>	0.0
	1			20	359	310			11	58	ŁŁ		56		Ш		241	-	0.0
Rod			C	B		-						_			_				
H00	0.5	-	ΤΥP	_	45	<u> </u>		•		42	H	4	•	•	H	Ĺ	33	-	0.0
	12,7	ļ.,		20	310	<u> </u>			25	42	ĿĿ	_	-		L	<u> </u>	228	<u> </u>	0,0
Wire H01	80.0	_	-VR	e n	leo.						_	_	_		_		h	1	0.0
וטח	2	-	TYP	20 20	50 345		-		13	Н	H	+	-	_	H	_	34		0.0
H00	0.08	<u> </u>					-		13	L	Н	4	_		\perp		234		0.0
HUV	_	-	ŢΥΡ		44	<u> </u>	-		2	H	H	4			H		33		0.0
	2			20	303	<u> </u>	<u> </u>		27		Ħ	_	•			_	228		0.0
Flat Pro		o	TYP	60	38	12		_	50	П	Т.	7			_	_	30		0.0
0000	8.35			20	262	83		-	ЫS	H		7	_						0.0
OS035	0.04		ΤΥΡ		38	12			50 45	Н	Н	_		_	Ц		207 30		0.0
03033	0.04	۳	111	20 20	262	83			_	H	-	-			H	H			
uoc	2 2 4		TUD				_		4 5	Н		4	_		Ц		207		0.0
H06	0.04	H	TYP		67	58			4	75 	H	-1	67		H	H	40		0.0
- N.	1	ليسا		20	462	400	<u> </u>	<u> </u>	4	75			57		<u> </u>	<u> </u>	278	<u> </u>	0.0
Tube OS035	0.0	0	TYP	co	38	12			50		- 1:	ਜ	40	_					0.0
23033	0.0	-		_	262	93			50	H		#	_			-			0.0
Flat Pro			Ь	217	202	0.5	Ţ		JU	Ļ		"	12	Ĺ			اا		0.0
		0	ТҮР	68	31	54			5	70	F	7	33				38		0.0
	1		.,		421	372			5	70	Ħ	-	53		Н	H	262		0.0
Wire	•			2.5	-21	212			•	, 0	П	ľ	~		Ε		202	Ī	0.0
OSO15	0.08	ο	TYP	68	42		[.]	<u> </u>	46		. [7		. 1			32		0.0
	2		I		290				40	H	H	f			-		221		0.0
_	<u> </u>	لـــا	L	۳	K SV		<u> </u>		+6		L	_			L	Ш	CZ 1		ν,υ

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 4

H08	0.04	0	ΥP	68	72	62		Ŀ	3	78	- J-	69	-	-	ŀ	42	21	0.0
	1			20	496	427	-	-	3	78		69		L	F	290	145	C,O
Wire												_	<u> </u>		•			
H02	80.0	þ.	TYP	68	90	-	F		3	E	Œ	ŀ	ļ.,	F	<u> </u>	-	ŢF T	0.0
	2		1	20	621	-	1	1	3	H	- [-	ŀ	}-	7	F	-	-	0.0
Rod												•						
05035	0.5	D_	TYP	85	40	Ŀ	F	Œ	50	Ð	- 5:	E	1	F	E	32	E	0.0
	12.7	1	1	20	276	}	ŀ	ŀ	50	Γ	- 50	¥_	I	- F	F	221	-	0.0
Flat Pro	oducts			•					_									
M20	0.04) i	TYP	88	39	14			44	П	- 60	ì	-	Ŀ	E	31	F	0,0
	1	1	1	20	269	97	ŀ	-	- 44	\vdash	- 61	}		1	F -	214	-	0.0
Wire	-														-	•		_
H04	80.0	0	TYP	бā	74	<u> </u>	ŀ	<u>.</u>	4	Ŀ	Œ	ŀ	-	E.	ŀ_	42	23	0.0
-	þ	1	H	20	510	-	ŀ	- F	-	F F	ŀ	F	-	+	ļ-	296	159	0.0
OS035	60.0	0	TYP	68	40	1	<u> </u>		50		Ŧ	Ē	F	Ī	Ē	30	1	0.0
	2		1	50	276	-	—	7	50	F	· F	F		_	-	207	-	0.0
Flat Pro	oducts														•			
08050	0.04	0	TYP	68	37	10	_ F	ŀ	45	F	- 53	de e	1	1	ŀ	28	F	0.0
	1			20	255	59		1	45	F	. jo:) 6	ļ .	Ţ	F	193		0.0
Wire												_						
H02	0.08	b_	TYP	68	60	ŀ		<u> </u>	Ĝ	E	F	ŀ	F	F	F	37	}-	0.0
	2			20	414	-	T	-	6	H		L	-	┰	F	255	1	0.0
Flat Pro	oducta									_	_	_						
OS025	C.04	þ	TYP	68	38	14	-	F	44	ΕĴ	- B(16	<u> </u>	E	F	31	ļ	0.0
	1			20	269	97	-		14	FT	- 30	16	1	F	F	214	F	0.0
H01	0.04	0	TYP	68	45	35	F	1	25	42	- -	44		ŀ	F	33	+	0.0
	1		Т	20	310	241			25	1,2	T	44	L '	T	τ	228		0,0

^{*}Fatigue Strength: 100 x 10 6 cycles, unless indicated as [N]X 10 6 .

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1910 F	1043 C
Melting Point - Solidus	1870 F	1021 C
Density	0.318 lb/in ³ at 68 F	8.8 gm/cm ³ @ 20 C
Specific Gravity	8.8	8.8
Electrical Resistivity	23.6 ohms-cmil/ft @ 68 F	3.92 microhm-cm @ 20 C
Electrical Conductivity	44 %IACS @ 68 F	0.257 MegaSiemens/cm @ 20 C
Thermal Conductivity	109.0 Btu · ft/(hr · ft2·°F)at 68F	188.7 W/m · °K at 20 C
Coefficient of Thermal Expansion	10.2 ·10 ⁻⁶ per °F (68-572 F)	18.4 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Tempers Most Commonly Used

Flat Products	
PLATE	H02, M20, OS035
SHEET	H02, M20, OS035
STRIP, ROLLED	H01, H02, H04, H06, H08, OS015, OS025, OS035, OS050

Other	
ROD	H00, OS035
TUBE	H55, H58, H80, O50, O60, OS035

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4

WREH00, H01, H02, H04, H06, H08, OS015, OS035

Typical Uses

Architecture

Ornamental Trim, Weather Stripping, Etching Bronze, Screen Cloth, Grill Work

Builders Hardware

Hardware, Kick Plates

Consumer

Chain Links, Lipstick Cases, Housing for Lipstick Compacts, Costume Jewelry, Ball Point Pens, Compacts,

Caskets

Electrical

Cable Wrap, Wave Guides, Rotor Bar - AC Motors

Fasteners

Rivets, Line Clamps, Bolts, Screws, Screw Shells

Industrial

Flexible Tube, Screen Wire, Escutcheons, Base for Vitreous Enamel, Studs

Marine

Marine Hardware

Ordnance

Primer Caps, Rotating Bands, Small Arms Cartridges, Artillery Projectile Rotating Bands, Press Fit

Plumbers Brass Goods

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership

Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD. Copper Connects Life Pd

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 4

Copperm

拉索 6570000 姓 主动的CB <u>宇宙</u> 和加速<u>空气活动</u> 600 点面局部 9星的 自由标题 诗野动脉

Search Results

C23000 (Red Brass, 85%)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu	Fe	Pb	Zn ·
Min./Max.	84.0-86.0	.05	.05	Rem.
Nominal	85.0		,	15.0

Note: Cu + Sum of Named Elements, 99.8% min.

Applicable Specifications

Product	Specification
Bar	ASTM B36
Fittings	ASME B16.29, B16.22
Nipples	ASTM B687
Pipe	ASME SB43 ASTM B698, B43
Plate	ASTM B36
Sheet	ASTM B36 SAE J461, J463
Strip	ASTM B888, B36 SAE J463, J461
Tube	ASTM B569, B698
Tube, Condenser	ASME SB111 ASTM B111
Tube, Finned	ASME SB359 ASTM B359
Tube, Seamless	AMS 4553 ASME SB135 ASTM B135 FEDERAL WW-T-791 MILITARY MIL-T-20168 SAE J461, J463
Tube, U-Bend	ASME SB395 ASTM B395
Tube, Welded	ASME SB543 ASTM B587, B543

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

Wire	ASTM B134	

Common Fabrication Processes

Blanking, Coining, Drawing, Etching, Forming and Bending, Heading and Upsetting, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Good
Coated Metal Arc Welding	Not Recommended
Spot Weld	Fair
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Good
Machinability Rating	30

Mechanical Properties (measured at room temperature, 68 F (20	C	:)
---	---	----

AICCII	anica	<u>i fik</u>	he	HUCS	insta	Suled at		rempe	۲a	L	<u>ur</u>	υ,	00	P (ZU	<u>UJ</u>				
Temper	Section Stze	Cold Work	Typ. Min	Temp		Yield Strength (0.5% ext. under load)	Strength (0.2%	Yield Strength (0.05% offset)	Ei	R	toc lare	kw Inc	rell 938	Mckens Hard.	Bri: Har	ne‼ ಚ.	Shour Strength	Fotigue Strength'	tzod Impact Strengt
	ìл.	%	L.	F	ksi	ksi	ksi	kai	%	B	c	F	301	500	500	3000	ksi	ksi	H-ID
	mm.			C	MPa	MPa	мРа	МРа	Γ	T	T	Γ	Т				MPa	MPa	J
lat Pro						<u> </u>						_							
VI20	0.0	o	ΤYΡ	88	42	-			Ŀ	Ŀ	ŀ	Ŀ	ŀ		F	<u> </u>	-		0.0_
	0.0		l	20	299	ŀ	-	-		F	ŀ	ŀ	F	-	F	F	ļ-	F	G.O
OS015	0.04	D .	TYP	68	45	18	-		42	ŀ	ŀ	71	38		-		33	-	0.0
	1			20	310	124	-	_	42	F	Ŧ	F	38	-	F	-	228	-	0.0
102	0.04	D .	TYP	68	57	49	-		12	6	5	r	80	1		-	37		0,0
	1			20	393	338	-		12	6	5.	F	60	ļ.			255		0.0
Wire	<u> </u>		•		<u> </u>				٠,	٠.		_	_			<u> </u>	L		
HO0	0.08	O.	TYP	68	50	F		_	25	F	Ŧ.	Ł	F	-		F	35	20	0.0
	2			20	345				25	ŀ	Ţ	F	Ī.	ļ.	F	L	241	138	0.0
101	0.08	6	ΤΥΡ	88	59		_	_	11	t	t	F	F		_		38		0.0
	2			20	407				11	F	Ţ	Ļ	Γ		Г	-	262		0.0
lat Pro	ducts			٠					-	_	_	-	٠		<u> </u>				<u> </u>
		0	TYP	38	78	61	-		4	3	3-	F	72	-	F	ŀ	44	F	0.0
	1			20	538	421		-	4	8	3	Į.	72	-		١,	303		0.0
OS035	0.04	8	ΤΥP	68	41	14	_		46	F	t	53	22	-	F	\vdash	31	-	0.0
	1			20	283	97	_		48	Ţ	Ţ	63	22				214		0.0
oipe			_	<u> </u>			لـــــــــــــــــــــــــــــــــــــ	L		۲.	_	_	1	L .					F .
0\$015	0.0	0	TYP	68	44	18		Ċ	45	Γ	F	71	Ι-	ļ.			-	F	0.0
_	0.0			20	303	124		_	45	ļ	Ŧ	71	F		П			-	0.0
ube										_	_	_	_		ш			' 	
180	0 065	35	TΥΡ	68	70	58	-		8	7	7	F	68	F	F	-	- 1		0.0
	1,65			20	483	400			8	7	7-	_	68		Г		-		0.0
lat Pro	ducts									_	_		_						٠
104	0.04	0	ΤYΡ	38	70	57			5	7	7 F	E	66	F	- 1	F	12		0.0
	1			20	483	393			5	7.	7	Г	38	-	-		290	_	0.0
Vire										۲		_		<u> </u>	ليسا			·	<u> </u>
)S015	Ĉ.08	0	TYP	68	45				-	Ē	E	E	E	£	E I	-]	33		0.0
	2			20	310	-		_		Ľ	F	Ļ	F	-		-	228	-	0.0
lat Pro	ducts									-	1	_	٠			ш			
		0	TYP	68	B4	63	- 1	-	3	38	1	F	74	-			46	_	0.0
									П		П	_	_						

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 4

	1			20	579	434	<u>_</u>	F	3	36	-	þ4	ŀ	F	ł	317	1	0.0
Wire																-		
HD8	80.0	D	TYP	38	105	<u>.</u>	<u> </u>		E	.]	Ŧ	F	F	F	Ŀ	54	F	0.0
	2	1		20	724	-	ŀ	-	FI	. [·F	ŀ	-	Ţ	I_	372	\mathbf{T}	0.0
Flat Pro	oducts										_							
05070	0.04	0	TYP	38	39	10		-	48	П	. 56	10	F	F	F	31	F	0.0
	1		1	20	269	69	-	-	48	.]	56	10	F	Ţ		214	-	0.0
Tube		•	•	•						_	-	۰-		٠.		*		
H55	0.065	15	TYP	88	50	40	T	J	30	55	Т	54	F	F	F	T T	T	0.0
	1.65			20	345	276	-	-	30	55	F	54	-	Ţ	F		Ţ	0.0
Wire		_	·				<u> </u>	'		_		1			1	-	1	
0\$035	0.08	0	TYP	68	41	Ŧ	÷.	Ī	48	.]	F	E	F	F	F	31	F.	0.0
	2:			20	283	F	-	-	48	7	F	F	-	F	F	214	F	0.0
H04	0.08	0	TYP	68	38	Ţ	-	 	ы	1	+	1		╁	┢	48	+	0.0
	2			20	507	T	-	1	â	.]	1	Ī		1.	Ţ	331		0,0
Flat Pro	oducts			_				- F		_		_	L	1	<u></u>			
OS050		0	TYP	68	40	12	-	1	47	Ţ	55	14	F	ŀ	į.	31	Ţ.	0.0
	1	T		20	276	83			47	7	59	14		T		214		0.0
Wire			_					•		_	_	_			_			
O\$025	0.08	þ	TYP	68	43	1	-	ļ	FI	T	T	F	F .	F	F	32	F	0.0
	2	1		20	296	Ţ		Ţ	П	7	T	F		1		221	Ţ.	0.0
H02	0.08	0	TYP	68	72	 		 	6	7	+	┢	-	╁┈		43	 	0.0
	2	1	1	20	496	-		 	ß	. 1	t	t		†		298	. 	0.0
Tube					1				ГΙ			_		Ц			ــــــــــــــــــــــــــــــــــــــ	
	0.065	0	TYP	68_	4D	12	+	ŀ	55		60	15	F	Ŧ	ŀ	F	F	0.0
	1.65		Г	20	276	83		1	55	-	-	15	-	T	F	ļ	1	0.0
OS015	0.065	0	ТУР		44	18		⇟	44		71	_		†-	一	 		0.0
-	1.65	T	+-	20	303	124		t —	45	-	+	na	.	t	t	t	t	0.0
Flat Pro	<u> </u>	' —		<u> </u>		<u> </u>			1.~[_1	Т,				Ь	<u> —</u>		<u> </u>
H01	0.0	ю	ТУР	68	49	F	1	ī	L	15	T	48	F	Ţ	L	L	Į.	0.0
	0.0	1	-	20	338	1	1	1	-	; ;5	-	48	t	t	t	t	t	0.0
OS025	_	6	ΤΥΡ		43	16		+-	44		68		-	₽	H	32	┼	0.0
	J.U.	<u> ''</u>	111	-11		110			. *		100	<u>420</u>	<u>r</u>		<u> </u>	<u>ی</u>	<u>r</u>	U.V

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁸.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1880 F	1027 C
Melting Point - Solidus	1810 F	988 C
Density	0.316 lb/in ³ at 68 F	8.75 gm/cm ³ @ 20 C
Specific Gravity	8.75	8.75
Electrical Resistivity	28.0 ohms-cmil/ft @ 68 F	4.65 microhm-cm @ 20 C
Electrical Conductivity	37 %IACS @ 68 F	0.216 MegaSiemens/cm @ 20 C
Thermal Conductivity	92.0 Btu · ft/(hr · ft2·°F)at 68F	159.2 W/m · °K at 20 C
Coefficient of Thermal Expansion	10.4 ·10 ⁻⁶ per °F (68-572 F)	18.7 · 10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/°F at 68 F	377.1 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

Tempers Most Commonly Used

Flat Products	
SHEET	H02, OS050
STRIP, ROLLED	H01, H02, H04, H06, H08, OS015, OS025, OS035, OS050, OS07

printed 06/01/2011 11:04AM by Luttie.Boarman p. 96/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4

Other							
PIPE	OS01	15		_	_	_	=
TUBE	H55,	H58,	H80,	OS015	, OS070		
WIRE	H00.	H01,	H02,	H04, F	108. OS0	15, OS02	5, OS035

Typical Uses

Architecture

Etching Parts, Weather Strip, Trim

Builders Hardware

Kick Plates

Consumer

Fire Extinguisher Cases, Tokens, Costume Jewelry, Coinage, Zippers, Badges, Nameplates, Compacts, Medallions, Plaques, Dials, Lipstick Containers, Rouge Boxes

Electrica

Sockets, Screw Shells, Conduit, Rotor Bars, AC Motors

Fasteners

Fasteners, Eyelets

Industrial

Heat Exchanger Shells, Flexible Metal Hose, Pump Cylinder Liners, Tags, Radiator Cores, Pickling Crates, Condenser Tubes, Fire Extinguishers, Tubing for Instrumentation, Tubing for Heat Exchangers, Heat Exchangers

Other

Fire Hose Couplings

Plumbing

Fittings, Pump Lines, Pipe Service Lines, Pipe Nipples, Pipe, Service Lines, J-Bends, Traps

Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects Life™

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3

Copperus

Search Results

C24000 (Low Brass, 80%)

Last Updated: Apr 28, 2008

Chemical Composition

(%max., unless shown as range or min.)

	Cu Cu	Fe		
Min./Max.	78.5-81.5	05	.05	Rem.
Nominal	80.0	-	·	20.0

Note: Cu + Sum of Named Elements, 99.8% min.

Applicable Specifications

Product	Specification
Ваг	ASTM B36
Brazing Filler Metal	FEDERAL QQ-B-650
Plate	ASTM B36
Sheet	ASTM B36 SAE J463, J461
Strip	ASTM B36 SAE J461, J463
Wire	ASTM B134

Common Fabrication Processes

Blanking, Drawing, Etching, Forming and Bending, Heading and Upsetting, Piercing and Punching, Roll Threading and Knurling, Shearing, Spinning, Squeezing and Swaging, Stamping

Fabrication Properties

Tubilication i Toperties	
Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Good
Coated Metal Arc Welding	Not Recommended
Spot Weld	Fair
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worke	edExcellent

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

Capacity for Being Hot Formed	Fair
Machinability Rating	30

Vlech:	anica	Pro	pe	rties	(mea:	sured at		tempe	ra	tυ	ıre	₽,	68	F (20	C)				
Temper	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength	Yleid Strangth (0.5% ext. under load)	Yield Strength (0,2% offset)	Yleid Strength (0.05% offset)	ΕI	Ro	oc)	ne	68 88	Vickens Hard,	Bri Nai		Shear Strength	Fatigue Strength	tzod Impact Strengti
	m.	Ŕ		F	ksi	ksi	ksi	ksi	%	В	¢	Ŀ	307	5Ç0	50C	3060	ksi	ksi	ft-ib
	mm.			U	MPa	MPa	MPa	MPa	Γ								мРа	MPa	J
Wite									_	_					_				
H06	0.08	0	qyy		116		<u> </u>	<u> </u>	4_	Ł	Ħ	Ŀ	⊨	<u> </u>	<u> </u>	-	<u> </u>		0,0
	2	L.,_		20	800	<u> </u>	<u> </u>	t	4	Ł	Ł	Ŀ	Ľ_	<u> </u>	<u> </u>	<u> </u>	<u> </u>		0.0
Flat Pro H02		0	TYP	60	61	50		1	1 0	70		_	64				39 ·		0.0
1.02	1	ř—	-	20	421	345	[•	70	-	Н	7. 74		t	\vdash	269		0.0
OS015		0	ТҮР		50	20			46	_	Н	75	12		┢	[33	\vdash	0.0
00010	1		<u> </u>	20	345	138			46		t	_	42		t		228	_	0.0
VVire	<u>'</u>	<u> </u>	<u> </u>		P+0				Γ.	L	L		,,,	<u> </u>					J
HOO	0.08	Ω	TYP	88	56	-	-	ŀ	27	ŀ.	ŀ	F	F	-	ļ.	ŀ	37		0.0
	2			20	386	-	F	-	27	F	F	Γ	F		F	F	255	-	0.0
H01	0.08	0	ТҮР	68	68	-	ł		12	E	Ŀ	Ŀ	E		Ŀ	ŀ.	42		0.0
	2			20	469	<u> </u>	<u> </u>	-	12	F	F	F	E	E	F	F	5 80		0.0
Flat Pro	ducts																		
OS035	0.04	0	TŸΡ	88	46	15		-	48		Ł		28	-	_	F	·	· · · · · · · · · · · · · · · · · · ·	0.0
	1			20	317	103	<u> </u>	-	48	Ł	Ł	66	28	<u> </u>	<u> </u>	Ł.,	-	-	0.0
H04	0.04	0	TYP	68	74	59	F	<u> </u>	7	82	•		71	<u> </u>	Ł.	-	43		0.0
	1	<u> </u>		50	510	407	<u> </u>	<u> </u>	7	82	Ł	Ė	71	<u> </u>	<u> </u>	<u>t</u>	296		0.0
Wire	h 00	<u> </u>	havo	b.,	le s	T	,					_			Υ-		laa		h 0
O\$015	0.08	0	TΥΡ		50		•		47		H	Ł	Ë		ŧ-	-	33		0.0
	2			20	345		<u> </u>	<u> </u>	47	┺	H	L			<u> </u>	<u> </u>	228		0.0
OS050	0.08	0	TYP		44	<u> </u>		<u> </u>	55	_	H	H	H	-	ŧ-	╄	32	_	0.0
- 4 5	ν	<u> </u>		20	303	<u> </u>	•	r	55	<u> </u>	Ł	_	_	<u> </u>	<u> </u>	<u> </u>	221		0.0
Flat Pro H08	0.04	6	түр	as	91	65		1.	k	91			77		_		49	24	0.0
.100	1	Ĕ	1	20	627	448		[3	91	1	Ē	27		t		331	1 6 5	0.0
Wire	<u> </u>	Ь_	ــــــــــــــــــــــــــــــــــــــ	F-V	PEI	17.0	ļ.,		_	Ľ.,	L	_	· ·	<u> </u>	_	_	P31	100	7.0
108	0.08	þ	ГУР	88	125	F	F.	F	В	F	F	-	E	ŀ	Ļ	F	60	26	0,0
	2			20	862		-	-	3	Γ	Г	Γ	Г	ļ .	Γ	F	414	179	0.0
Flat Pro	ducts		1	L	-		·		_	_	_					_			
O\$070	0.04	0	TYP	68	42	12		-	52	E	E	57	8	F	Ŀ	E_			0,0
	1			20	290	83	<u> </u>	<u> </u>	52	Ł	Ł	57	8	<u> </u>		ŀ	ł	<u> </u>	0.0
Wire		,		,			_			_	_								
H04	80.0	0	TYP	_	107	-	 	<u> </u>	۴.	Ł	Ł	_	┡	<u> </u>	▙	<u> </u>	53	23	G.D
	2		Щ.	20	738	<u> </u>	<u> </u>	<u> </u>	9	Ŀ	Ł	Ц	ᆫ	<u> </u>	<u> </u>	<u> </u>	365	159	0.0
O\$035	0.08	þ	ΤYΡ		46		┢──	 	50	•	Ł	Ŀ	F	<u> </u>	F	 	-		0.0
	<u> </u>			20	317	<u> </u>	<u> </u>	<u> </u>	50	L	Ŀ.	Ŀ	<u> </u>	<u> </u>	Ł_	<u> </u>	•		0.0
Flat Pro OS050		þ	ТҮР	68	44	14	L		ĒΩ	Ε		91	15		t	_	32		0.0
~~~ <del>~</del>	1	<del>Ľ</del>	_	20 20	<del> </del>	97	<del>[</del>	<del>[                                    </del>	_				16		✐	<del>[                                    </del>	32 221	$\vdash$	0.0
Wîre	<u>'</u>	Ц		<u> </u>	P~~	<u>r'                                      </u>	<u> </u>	<u> </u>	L.,	L	L	<u>'</u>		_	_	<u> </u>	r.c. ,	Ĺ	r.v
H62	0.08	o	TYP	68	82	F	F	F	8	F	F	F	F	F	F	F	47		0.0
	Z	Γ	_	20	565	ļ.		Į.	8	-	F	Γ		-		ŀ	324		0.0
Flat Pro	_	<b></b>	<del>!</del>		L'	L		L	<u> </u>		Ц	Ц.	Щ.	<b></b>	<u> </u>		. – •	L	
H01	_	0	TYP	68	53	40	F	F	30	55	Ŀ	Ē.	54	Ţ	E	<u> </u>	36		0.0
	!			20	385	276	<u> </u>	-	30	þΰ	F	F	54		F	1	248		0.0
OS025	0.04	0	TYP	68	48	17	F	F		Ē	E	89	32		E	E	F		0.0
	1			20	331	117	ļ	-	47	F	F	89	32		F	1	-		0.0

^{*}Fatigue Strength: 100 x 10  6 cycles, unless indicated as [N]X 10 6 .

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1830 F	999 C
Melting Point - Solidus	1770 F	966 C
Density	0.313 lb/in ³ at 68 F	8.66 gm/cm ³ @ 20 C
	8.67	8.67
Electrical Resistivity	32.4 ohms-cmil/ft @ 68 F	5.39 microhm-cm @ 20 C
Electrical Conductivity	32 %IACS @ 68 F	0.187 MegaSiemens/cm @ 20 C
Thermal Conductivity	81.0 Btu · ft/(hr · ft2.ºF)at 68F	140.2 W/m · °K at 20 C
Coefficient of Thermal Expansion	10.6 ·10 ⁻⁶ per °F (68-572 F)	19.1 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · ^o K at 293 K
Modulas of Elasticity in Tension	16000 ksi	110000 MPa
Modulus of Rigidity	6000 ksi	41370 MPa

**Tempers Most Commonly Used** 

Flat Products		_		-
STRIP, ROLLED H01, H02, H04, H08, OS015	, OS025	OS035,	OS050,	OS070
WIRE, ROLLED H02, H08, OS035, OS050			•	

Other					
WREH00, H01,	H02, H04,	H06, H08,	OS015,	OS035,	O\$050

### Typical Uses Architecture

Spandrels, Medallions, Ornamental Components

### **Builders Hardware**

**Decorative Panels** 

## Consumer

Musical Instrument Parts, Clock Dials, Plaques

#### **Electrical**

Rotor Bars, AC Motors, Battery Caps

#### Industrial

Flexible Hose Bellows, Welding Wire, Flexible Hose, Pump Lines

#### Other

Tokens

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects Life™

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 4



# Coppered

# **Search Results**

C26000 (Cartridge Brass, 70%)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu	Fe	Рb	Zn
Min./Max.		05	.07	Rem.
Nominal	70.0		,	30.0

Note: Cu + Sum of Named Elements, 99.7% min.

**Applicable Specifications** 

Product	Specification
Bar	ASTM B36, B19 SAE J463, J461
Brazing Filler Metal	FEDERAL QQ-B-650
Cups, Cartridge Case	ASTM B129 MILITARY MIL-C-10375
Disk	ASTM B19
Plate	AMS 4507, 4505 ASTM B19, B36
Rod	SAE J461, J463
Sheet	AMS 4507, 4508, 4505 ASTM B19, B36 SAE J463, J461
Shim Stock, Laminated	MILITARY MIL-S-22499
Strip	AMS 4507, 4505 ASTM B36, B569, B19, B888 SAE J463, J461
Tube, Seamless	ASTM B135 FEDERAL WW-T-791 MILITARY MIL-T-20219 SAE J461, J463
Tube, Welded	ASTM B587, B587
Wire	ASTM B134 SAE J463, J461

**Common Fabrication Processes** 

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 4

No information available.

Fabrication Properties

Joining Technique	Suitability					
Soldering	Excellent					
Brazing	Excellent					
Oxyacetylene Welding	Good					
Gas Shielded Arc Welding	Good					
Coated Metal Arc Welding	Not Recommended					
Spot Weld	Fair					
Seam Weld	Not Recommended					
Butt Weld_	Good					
Capacity for Being Cold Worked	Excellent					
Capacity for Being Hot Formed	Fair					
Machinability Rating	30					

Mechanical Properties (measured at room temperature, 68 F (20 C)

Mecn	<u>anicai</u>	Pro	pe	rties	(mea:	<u>sured at</u>	room	<u>tempe</u>	ra	tu	re	, 6	8	F (20	C)				
Temper	Section Sizo	Cold Work	Typ/ Min	Temp	Tensile Strength	Yield Strength (0.5% ext. under load)	Yield Strength (0.2% offset)	Yield Strength (0.05% offset)		<u>L</u>					Bri: Hai	nell d.	Shear Strength	Fatigue Strength	izod Impect Strength
	in.	¾.		F	ksl	ksl	ksi	ksi	%	Э	C F	= 30	1	500	500	3000	œi	ksi	t-ib
	mm.			С	MΡα	MPa	МРа	MPa	Γ	П	T	T			_		MPa	MPa	J
Wire					L.	<del></del>	•	<u> </u>	_		_						L ·	L.	L
H06	0.08	0	ΙΥΡ	68	124		-		4	E. I	- [	-  -				ŀ			0.0
	22			20	855		-	-	4	F	-  -	. F			-		-	-	0.0
Tube																			
H80	0.0	35	ΤΥΡ	_	78	64			8	92	1	7	3		Е	E	<u> </u>		0.0
	0.0			20	538	441	-	<u>-</u>	8	82	╌┠	<b> </b>	3	<u> </u>	┡		<u> </u>	-	0.0
Flat Pro													_						
OS015			ťΥP		53	22	-	·	54	П	-	84:	_		E	E	35	14	0.0
	1				365	152	<u> </u>	<u> </u>	54	Łŀ	-	94,	3		Ŀ	<u> </u>	241	97	0,0
H02	0.04		ΤΥΡ		52	52	-	-	25	70	1	6!	_			E	40	18	0.0
L	1			20	427	359	-	<u>-</u>	25	70	⋅ŀ	68	5	-	┞	ŀ	276	124	0.0
Wire																			
H00	80.0		ΙΥΡ		58		-	-	35		1	Ŧ			Ш		38		0.0
	2			20	400		<u> </u>		35	Łŀ	<u>-</u>	ŀ				<u> </u>	262		0.0
H01	0.08		ΤΥΡ	58	70	-		-	20	EJ	Ι	E			į	-	-		0.0
	2			<b>20</b>	483	-	}	-	20	⊦⊦	ŀ	Т		-	-	ŀ		-	C.O
Flat Pro	ducts			*													-		
H05	0.04	0	ΤΥP	_	86	65			5	38	Ŧ	76	j			L	46		0.0
	1				593	448	-		5	89	_	78		1	1	٠.	317	_	0.0
05100	0.04	0	ŢΥΡ	60	44	11	-		3€	Ŀŀ	ŀ	411	Ī		1		ļ	13	0.0
	1			20	303	78	ŀ	-	86	ŀ ŀ	ŀ	411	i		ŀ	- 1		90	0.0
0\$035	0.04	Ū	TYP	68	49	17	-	,	57	Ĺ	. 6	831	1		Į,	Ļ	34	14	0.0
	1			20	338	117	-	_	57	FJ	Τ,	<b>88</b> 31	1	, –	_		234	97	0.0
H04	0.04	0	ΤΥP	88	76	63	-	-	8	32	Ť	73	1				44	21	0.0
	1			20	524	434	-	-	8	32	Ī	73	,				303	145	0.0
Wire									-	_	•				٠				
OS015	80.0	O	ΤYΡ	88	54				56	EJ	T	Ŀ				E			0.0
	2			20	372			-	50	- 1	T	Ŧ	٦						0.0
OS050	80.0	c	ΤΥΡ	58	48		·		64	Ħ	t	Ī	7						0.0
	2			20	331	-	-	-	54	F	ŀ	Ŧ	٦			F	-		0.0
let Pro	ducte										•		_					Lav	
H08	0.04	0	ΤΥP	88	94	65	-		3	91	ŀ	77	'				48	23	0 D
	;	- 7		20	548	448	-	-	3	31	F	77		-		- 1	331	159	0.0
Rod					_				_			_	-4					-	
OS050	1	0	TYP	68	48	18			65	J.	þ	5	J				34	-	0.0
	25.4			20	331	110	-		<b>3</b> 5	Į Į	Б	4	T	-		-	234		0.0

H00	h	6	Ιτγρ	68	55	40	ŀ	1	488	<b>+ +</b>	F	ļ.	Ŀ.	}	38	ŀ	0.0
	25.4			20	379	276	- I	-	4860	<del>,</del> I-	ŀ	Ţ	F	F	248		0,0
Vire														1			
H08	0.08	q	TYP	68	130	_ }		E	3 -	FF	ŀ	ŀ	Ι.	ŀ	60	22	0.0
	2			20	896	T	-	-	3 -	Ħ	F		F	F	414	152	0,0
Tube					_										-		
OS025	0.0	0	TYP	66	52	20	1	-	55-	<b>F</b> 17	5 40	-	1	Ļ		1-	0.0
	0.0	Ĭ		20	359	138	1	ļ	55-	Ιħ	5 40	-	Ţ	1		<u> </u>	0.0
Flot Pr	oducts											•		_			
OS070	0.04	G	TYP	68	46	14		-	65	Fβ	B 15	-	Ł.	ŀ	32	13	0.0
	1		Π	20	317	97	-	$\top$	<b>6</b> 5-	ΙŢ	B 15	-	F	-	221	90	0.0
Rod														•			_ '
H02	1	20	TYP	68	70	52		ŀ	30 80	ŧΕ	E	ļ	E	F	42	22	0.0
	25.4			20	483	359	1	T-	3080	ŦŦ	T		ļ	Ļ	290	152	0,0
Vire												-	-				
OS035	0.08	n	TYP	88	50	-	Ŀ	ŀ	60	ΕE	F	<u> </u>	F	F	34	F	0.0
	2			20	345	1	-	-	60-	ŀŀ	ļ.	-	F	-	234	-	0.0
Flat Pr	oducts							· · · · ·									
05050	0.04	þ	TYP	68	47	15		Ŀ	62-	- 6	4 28	F	-	<u> </u>	ŀ	F	0.0
	1		1	20	324	103	-	F	62	F 18	4 26	ļ.	F	ļ	Ļ	F	0,0
Wire							_					A	•		•		
05025	0.08	0	TYP	68	52	. L	-		58-	FF	<b>F</b>	-	F	ŀ	ŀ	F	0.0
	2			20	359	-	-	_	58-	FF	F	ļ	-	F	-	F	0.0
Tube																	
OS050	0.0	0	TYP	68	47	15		ŀ.,	65	ŀķ	178	ŀ	E	-	F	F	0.0
	0.0	Ш.		20	324	103	-	Ŧ	85 -	FB	426	-	Ŧ	F	ļ	Ţ-	0.0
lat Pr	oducts				_							<del></del>		•		-	
H10	0.04	0	TYP	68	99	65	ŀ	Ē.	3 93	EL.	76	F	Ŀ	Į.	F	F	0.0
	1	1	<b> </b>	20	283	448	-	F	3 93	FF	78	-	Ţ	Ļ	-	Į.	0.0
101	0.04	0	TYP	36	54	40	-	+	43 65	Ļţ.	54	<del>                                     </del>	ナー	ļ	36	-	6.0
	1			20	372	276		T-	4355	IT	54		┰		248	<del>                                     </del>	0.0
05025	0.04	0	TΥP	68	51	19	+	+	55	17	-	<del>[</del>		┢	<del>L -</del>	+	0.0
	1	1	_	20	352	131	<del>-  </del>	1-	55	-	236	<del> </del>	+-	┝┷	┼	<del>-</del> {	0.0

^{*}Fatigue Strength: 100 x 10  6 cycles, unless indicated as [N]X 10 6 .

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1750 F	954 C
Melting Point - Solidus	1680 F	916 C
Density	0.308 lb/in ³ at 68 F	8.53 gm/cm³ @ 20 C
Specific Gravity	8.53	8.53
Electrical Resistivity	37.0 ohms-cmil/ft @ 68 F	6.15 microhm-cm @ 20 C
Electrical Conductivity		0.164 MegaSiemens/cm @ 20 C
Thermal Conductivity	70.0 Btu · ft/(hr · ft2·°F)at 68F	121.2 W/m ⋅ ºK at 20 C
Coefficient of Thermal Expansion	111.1 ·10 ⁻⁸ per ^o F (68-572 F)	20.0 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension		110000 MPa
Modulus of Rigidity	6000 ksi	41370 MPa

**Tempers Most Commonly Used** 

Flat Products	
	H02, OS070, OS100
	H01, H02, OS035, OS050, OS070
STRIP, ROLLED	H01, H02, H04, H06, H08, H10, OS015, OS025, OS035, OS050, OS070, OS100

printed 06/01/2011 11:04AM by Luttie.Boarman p. 105/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4

WIRE, DRAWN | H02, OS050 WIRE, ROLLED | H02, H04, H06, OS035, OS050, OS070, OS100

Other		
SHAPES	M30	-
TUBE	H58, H80, OS025, OS050	
WIRE	H00, H01, H06, H08, OS015, OS025, OS0	35, OS050

### Typical Uses

**Architecture** 

Grillwork

Automotive

Electrical Connectors, Radiator Cores, Tanks, Heater Cores, Radiator Tanks, Odometer Contacts, Thermostats, Radiator Tube

**Builders Hardware** 

Decorative Hardware, Door Knobs, Finish Hardware, Hinges, Kick Plates, Locks, Push Plates

Consumer

Bird Cages, Costume Jewelry, Syringe Parts, Chain Links, Watch Parts, Coinage, Etched Articles, Pen/Pencil Inserts and Clips, Lamps, Shelfs - Electrical Sockets, Buttons, Snaps, Planters, Fireplace Screens

Electrical

Reflectors, Lamp Fixtures, Flashlight Shells, Screw Shells, Terminal Connectors

**Fasteners** 

Eyelets, Screws, Grommets, Rivets, Pins, Fasteners

Industrial

Sound Proofing Equipment, Heat Exchangers, Wire Screens, Pump Cylinders, Tubing for Instruments and Machines, Air Pressure Conveyer Systems, Liners, Springs, Power Cylinders, Pumps, Bead Chain, Chain Ordnance

Ammunition Cartridge Cases, Ammunition, Mechanical Housings for Lighters, Shells - Mechanical Housings for Ammunition

Other

Washers, Stencils

Plumbing

Faucet Escutcheons, Plumbing Accessories, Fittings, Bathroom Fixtures, Traps, Plumbing Brass Goods

Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Unk to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the International Copper Association, LTD.

Copper Connects Life™

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search



# Copper.om

了。 在全点的机能影响在全面的影响影响的一种,但是一种一种的影响的一种,但是是一种一种的影响的。

## **Search Results**

C31400 (Leaded Commercial Bronze)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

					Zn
Min./Max.	87.5-90.5	10	1.3-2.5	7	Rem.
Nominal	89.0_	-	1.9	-	9.1

Note: Cu + Sum of Named Elements, 99.6% min.

**Applicable Specifications** 

Product	Specification
Bar	ASTM B140
Rod	ASTM B140
Shapes	ASTM B140
Valves	MILITARY MIL-V-18436

# **Common Fabrication Processes** Machining

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Not Recommended
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Good
Capacity for Being Hot Formed	Poor
Machinability Rating	80

Mechanical Properties (measured at room temperature, 68 F (20 C)																
Төсц	per Section	Cold	Typ	Temp	Tanzilo		Yield Steenath	Yield Strength	Εì	Rockwell	Vickene	Brineil	Sheer	Estínua	izod	ŀ

	Size	Work	Min		Strength	(0.6% ext. under load)	(0.2% offaet)	(0.05% offset)		Ľ	an	ine	255	На	rd.	Ha	rd.	Streng	thStrength	Strengti
	in.	*		F	ksi	ksi	ksi	lsi.	*	В	F	F	30	500	0	500	3000	ksi .	ksi N-Ib	It-lib
	itte:			C	MPa	MPa	MPa	MPa	Т	Ī	T	Ī				1		MРа	MPa	j.
Rod									_	_							_			
H02	0.5	25	ΤŸΡ	33	55	50	L	F	14	ķ	1	E	E	Ŀ		ŀ	Ŀ	31		0.0
	12.7			20	379	345	-	F	14	ĥ	1	F	ļ	Ţ			F	214	-	0.0
Ber							•				_	_								•
H02_	0.25	0	ΤΥΡ	68	55	50	-	J.	12	ŝ	1 E	F	Ŀ	Τ.		}	Į.	31		0.0
	6.35			20	379	345		F	12	6	1	F	F	F		-	-	214	-	0.0
Rod										_									_	
Q\$050	1	0	TYP	68	37	12	-	F .	45	E	E	S	L	ļ		1	F	24	-	0.0
	25.4			20	255	<b>8</b> 3	-	1	45	F	F	55	Ŧ	F		F	F	165	-	0.0
H04	1	20	Т/Р	85	52	45	F .	-	18	5	ī	E	ŀ	F		F	F	30	-	0.0
	25.4			20	359	310	-	F	18	ő	타	F	F	ŀ		F	-	207	-	0.0
H02	C.25	37	ΤYΡ	69	60	55	-		10	Б	ŧ	Ē	F	Ē.		ŀ	ļ-	32	1	0.0
	6.35			20	414	379	L	ļ	10	ß	5	Ļ	Ţ	Ļ		Ţ	1	221	1	0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1900 F	1038 C
Melting Point - Solidus	1850 F	1010 C
Density	0.319 lb/in ³ at 68 F	8.83 gm/cm ³ @ 20 C
Specific Gravity	8.83	8.83
Electrical Resistivity	24.7 ohms-cmil/ft @ 68 F	4.11 microhm-cm @ 20 C
Electrical Conductivity	42 %IACS @ 68 F	0.246 MegaSiemens/cm @ 20 C
Thermal Conductivity	104.0 Btu · ft/(hr · ft2.ºF)at 68F	180.0 W/m ⋅ ºK at 20 C
Coefficient of Thermal Expansion	10.2 · 10 ⁻⁶ per ^o F (68-572 F)	18.4 · 10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · °K at 293 K
Modulas of Elasticity in Tension	17000 ksi	117000 MPa
Modulus of Rigidity	6400 ksi	44130 MPa

### **Tempers Most Commonly Used**

Flat	Products			.,	
BAR	, DRAWN	H02.	H04,	O60,	OS050

Other		-		
ROD	H02,	H04,	O60,	OS050
SHAPE	SM30			

### Typical Uses

**Builders Hardware** 

Door Knobs

Electrical

Connectors for Wire and Cable, Electrical Plug Type Connectors

**Fasteners** 

Screws, Nuts

Industrial

Pickling Fixtures, Pickling Racks, Pickling Crates, Screw Machine Parts

Start Another Search

printed 06/01/2011 11:04AM by Luttie.Boarman p. 109/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

#### **DISCLAIMER:**

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects Life™

printed 06/01/2011 11:04AM by Luttie.Boarman p. 111/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



## Copperate

### **Search Results**

C33000 (Low Leaded Brass (Tube))

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

		Fe		Zn
Min./Max.	65.0-68.0	.07	.257	Rem.
Nominal	66.0		.50	33.5

Note: Cu + Sum of Named Elements, 99.6% min.

Applicable Specifications

Product	Specification
Tube, Seamles	s AMS 4555, 4554
	ASTM B135
	FEDERAL WW-T-791
	MILITARY MIL-T-46072
	SAE J463, J461

### **Common Fabrication Processes**

Forming and Bending, Machining, Piercing and Punching

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended
Spot Weld	Fair
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	
Capacity for Being Hot Formed	Poor
Machinability Rating	60

Mechanical Properties (measured at room temperature, 68 F (20 C)

Section	Cold	Typ/	Tensila			Yiaid Strength	Rockwall	Vickens	Brinell	Shoar	Fati	aue.	Izod	
		,,,,		р 4д с	L	Lan and all	NOURHAII	*1000	C1114011	D11001	P AU	yue i	PLOG	

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

Temper	Size	Work	Min	Temp	Strength	(0.5% ext. under load)	(0.2% offset)	(0.05% offset)	Ei	На	rd	ne:	55	Hard.	Had	d.	Strength	Strongth*	impact Strength
	n.	*	$\Box$	F	ksi	ksi	ksi	(3)	36	В	G	F	30T	500	500	3000	i,si		R-ID
	mm.			Ç	MPa	MPa	MPa	MPa	T		П			•	T		MPa	MPa	į
Tube							-					_							
OS025	0.0	0	qyr	68	52	20		E	50	- ]	Ŀŀ	73	37	-	F	F	F	-	0.0
	0.0		•	20	359	138	ļ .	ŀ	50	F	П	75	37	-	Ţ.	-		."	0.0
H04	0.0	35	TΥP	68	75	60			7	80	Ħ	_	69	_	Ŧ	┢	-		0.0
	0.0			20	517	414		-	7	80	П	. ]	69	F	T			_	0.0
OS050	0.0	0	TYP	68	47	15		ļ —	60	۳	H	<b>5</b> 4	26	_	+		$\vdash$		0.0
	0.0	T		20	324	103	_	F	60	Г	П	94	26		T	F			3.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1720 F	938 C
Melting Point - Solidus	1660 F	904 C
Density	0.307 lb/in ³ at 68 F	8.5 gm/cm ³ @ 20 C
Specific Gravity	8.5	8.5
Electrical Resistivity	39.9 ohms-cmil/ft @ 68 F	6,63 microhm-cm @ 20 C
Electrical Conductivity		0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu ft/(hr ft2.ºF)at 68F	
Coefficient of Thermal Expansion	11.2 ·10 ⁻⁶ per °F (68-572 F)	20.2 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

### Tempers Most Commonly Used

Other			
TUBE H58	H80,	OS025,	OS050

### Typical Uses

Industrial

Power and Pump Cylinder Liners, Power and Pump Cylinders

Ordnance

**Primers** 

Plumbing

Plumbing Accessories, Pump Lines, Trap Lines, J Bends, Plumbing Brass Goods

Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

printed 06/01/2011 11:04AM by Luttie.Boarman p. 113/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects LifeTM

http://www.copper.org/resources/properties/db/CDAP ropertiesResultServlet.jsp?action=search.

6/23/2008

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



## Copperati

### **Search Results**

C33200 (High Leaded Brass (Tube))

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

				Zn _
Min./Max.	65.0-68.0	.07	1.5-2.5	Rem.
Nominal	66.0	ļ	2.0	32.0

Note: Cu + Sum of Named Elements, 99.6% min.

**Applicable Specifications** 

Product	Specification
Tube	AMS 4558
	ASTM B135
	MILITARY MIL-T-46072

### **Common Fabrication Processes**

Forming and Bending, Machining, Piercing and Punching

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended
Spot Weld	Fair
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Poor
Machinability Rating	60

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp		Strength (0.2%	Yleid Strength (0.05% offset)	ΕI	Ro Ha	ckn	73     43   3	Vickens Hard.	Brt Hai	nell rd.	Shear Strength	Fatigue Stroogth	tzod Impact Strength
								П		Т	Π		Ī	Ĭ			

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

	in.	*	Ī	F	ksl	ksi	ksi	ksi	<b> </b> 46		d	bo	T <b>5</b> 00	500	3000	ksi	ksi	R-Ib
	mm.			c	MPa	MPa	МРа	MPa			П					мРа	MPa	J.
Tube								-	-							1		
OS025	0.0	_ <b>(</b> 0	TYP	60	52	20	-	E	50	į.	Ð	5 37	F	T	F		-	0.0
	0.0			20	359	138	-	1	50	-	- 7	'5 <b>3</b> 7	-	-	-	-	).	0.0
H04	0.0	35	TYP	68	75	60	$\Box$		7	80	Ţ	39	1	⇉	E		1	0.0
	0.0		T	20	517	414	F	Ţ	7	9	Π.	69	1	-	F	<u>,                                    </u>	Ţ. —	0.0
OS050	0.0	0	TŸF	68	47	15		-	60	-	E.K	4 26		F	F	,	T	0.0
	0.0			20	324	103	-	Ŧ	80		П	4 26	-	L	-		F	0.0

*Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 106.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1710 F	932 C
Melting Point - Solidus	1650 F	899 C
Density	0.308 lb/in ³ at 68 F	8.53 gm/cm ³ @ 20 C
Specific Gravity	8.53	8.53
Electrical Resistivity	39.9 ohms-cmil/ft @ 68 F	6.63 microhm-cm @ 20 C
Electrical Conductivity	26 %IACS @ 68 F	0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu · ft/(hr · ft2.ºF)at 68F	116.0 W/m · ºK at 20 C
Coefficient of Thermal Expansion	11.3 ·10 ⁻⁶ per ^o F (68-572 F)	20.3 · 10 ⁻⁸ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/°F at 68 F	377.1 J/kg · °K at 293 K
Modulas of Elasticity in Tension		103400 MPa
Modulus of Rigidity	5600 ksi	38610.MPa

**Tempers Most Commonly Used** Other

TUBE H58, H80, OS025, OS050

#### Typical Uses

Industrial

Screw Machine Products, Power and Pump Cylinder Liners, Power and Pump Cylinders, Hydraulic Controls

### Ordnance

**Primers** 

### Plumbing

Plumbing Accessories, Plumbing Brass Goods

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Unk to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Affiliated with the International Copper Association, LTD, Copper Connects Life  $^{\rm IM}$ 

### Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys Search

### Copper Development Association



### Search Results

C33500 (Low-Leaded Brass)

Last Updated: Jul 06, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	C	Fe ⁽¹⁾	РЬ	Zn
Min./Max.	62.0-65.0	.15	.257	Rem.
Nominal	63.5	-	.50	36.0

(1) For flat products, the iron shall be .10% max. Note: Cu + Sum of Named Elements, 99.6% min.

**Applicable Specifications** 

Product	Specification
Bar	ASTM B121
Plate	ASTM B121
Sheet	ASTM B121
Strip	ASTM B121

### **Common Fabrication Processes**

Blanking, Drawing, Machining, Piercing and Punching, Stamping

Fabrication Properties

Suitability
Excellent
Good
Fair
Fair
Not Recommended
Fair
Not Recommended
Fair
Good
Poor
60

Mechanical Properties (measured at room temperature, 68 F (20 C)

	emper	Section Size	Cold Work	Typ/ Min	Temp	Strength	Strongth	Strength (0.2%	Yield Strength (0.05% offset)	EΙ	Ro Ha	ckv rdn	voli C35		Vickens Hard,	Bri: Har	ness rd.	Shear Strength	Fatigue Strongth	izod Impact Strengih
Ţ		in.	%		٦	ksi	ksi	ksi	ksi	χ,	В	c F	þ	77	500	500	3000	kai	ksi	t-Ib
V										Г		T	T	7		Г	П			

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys Search

		_	_		_						_		_			_		_
71-4 D.	mm,	L	<u> </u>	c	МРа	MPa	MPa	MPa	<u> </u>	Ш				Ì	<u>L</u>	MPs	MPa	þ
Flat Pro H02	0.04	ю	ТҮР	68	E1	50	7	<del></del>	haha	J I	-	~ 5		<del>,                                     </del>		Lis		lo o
102	1, 1	₽—	1175	20	61 421	345	<del>-</del>	<del>-</del>	2370	-	-	65 ec	È	卜	<del>-</del>	40		0.0
Rod	<u>l'</u>		<u> </u>	μU	721	343	1	1	2370	<u>ት</u>		65	<u> </u>	<u>t</u> _	<u> </u>	276	<u> </u>	0.0
O60	1.35	b	SMIN	68	40	15	ī.	<del></del>	30	П	_	_	Γ.	_		, -		lb o
-	34.9	<del>ľ -</del>	Samo	20	276	103	f -	₽	30	H	Η	_	├	F	r –	<del>-</del>	_	0.0
C60	0.75	6	Child	_			+	<b>!</b>		Н	Ц	_	<u> </u>	<b>!</b> —	<u> </u>	<b>!</b> —	<del>-</del> -	0,0
~~	19,1	۲	SMIN	_	44	15	<del>-</del>	<del>}</del>	<u> </u>	H	4	-	<u> </u>	F	<del>-</del>	<del>                                     </del>	+	0.0
S.C.O.		<u>L</u>	51411	20	303	103	↓	<del> </del>	25	Н		_			ᆣ	<u> </u>		0.0
<u>06</u> 0	< 0.50	p_	SMIN	_	46	16	┿—	╄	50	Ħ	4		<u> </u>	Ł	┡	<u> </u>	+	0.0
	<12.7	<u> </u>	ل	20	317	110	<u> </u>	<u> </u>	<u> 1994</u>	H	_		<u> </u>	Ŀ_	<u> </u>	-	<u>. t</u>	0.0
Flat Pro OS035		0	ΤΥP	88	49	17	_	<del></del>	Izal	11	1	5.4	_		r	a .	<del></del>	<b>b</b> a
55035	1	۳	117	20	•	7	╀╼┈	<del> </del>	57	-	88	_		╄	┡	34	+	0.0
Rod	<u>l'</u>	<u> </u>	<u> </u>	ķυ	338	117	<u> </u>	<u>t                                     </u>	57	Ŀ	88	31	<u> </u>	<u>t                                    </u>		234	r	0.0
H02	<0.50	6	SMIN	e e	57	25	Υ	т .	7 F	7 1	_	_		_	г —			6.0
	<12.7	Ť	Similar	20	393	172	<del></del>		<del> </del>	H	4			F	┡		+	0.0
Flat Pro	<u> </u>	<u> </u>	<u> </u>	kΛ	p33	1''2	<u> </u>	<u>r</u>	ľ	11	1	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>t                                     </u>	0.0
HO4	0.04	o	ΤΥΡ	88	74	60	T	<u>r</u>	8 80	II		69		_		43	τ .	<b>b</b> .o
	1	Ť		20	510	414	t	t	8 80	-	-	69 69		t		296	<del>[</del>	0.0
Rod	<u> </u>	Ч	Ь.	<u> </u>	P.0	* 1.7	<u> </u>		L L	Ц		.,,3		<u> </u>		K 20	Ι.	P.V
HO1	0.75	р	SMAX	<b>1</b> 68	62	F -	F	F	<u> </u>	ļļ	T			F	Į.	L .	Ţ	6.0
	19.1	П	ī	20	427	1	T		tt	Ħ	╗				<u> </u>	t -	$t^{-}$	0.0
HO1	<0.50	6	SMIN	_	52	25	t	$\leftarrow$	<del>la</del> t	Н	$\dashv$			┢	┝	-	<del></del>	0.0
	<12.7	f	314154	20	358	172	t	[	101-	H	┪			F	F-	f	<del>-                                    </del>	0.0
H01	1.35	Ь	SMIN		42	15	<del>[                                    </del>	<del>[                                    </del>	20	H	4	_		Ŀ	F	<u> </u>	ᠮ—	
	34.9	<del>r</del> -	Saure	20	290	103	<del></del>	<del>-</del>	1 -	Ħ	┪	_		H	F	<del></del>	+	0.0
HO1	1.35	0	SMAX		62	103	╄—	<del> </del>	120	H	4	-		<u> </u>	<u> </u>	<u> </u>	_	0.0
	34.9	ř	i Simi, Σ	_	_	<del></del>	╄╼╾	<del>-</del>	₩	H	4	_		▙	Ι	-		0.0
Po.	_	<u> </u>	CNAV	20	427	<del>                                     </del>	<del>-</del>	<del>-</del>	11	H	4	_		Ŀ	_	<u> </u>		0.0
H01	<0.50	0	ŞMAX		65	<del>†                                      </del>	+	<del>-</del>	╬	Ħ	4	_		<u>;                                    </u>	▙	<u> </u>	-	0.0
10.0	<12.7	ļ.,		20	448	<u> </u>	<u> </u>	<u> </u>	<u> </u>	肆	╧	-		Ŀ	<u> </u>	<u> </u>	<u> </u>	0.0
H02	< 0.50	b -	SMAX	_	80	<del>-</del>	╄	<u> </u>	╁╁	H	4			▙	-	-	+	0.0
	×12.7	<u> </u>		20	552	<u> </u>	<u> </u>	<u> </u>	<u> </u>	H	_	-		Ł	-	ŀ	-	0.0
Flat Pro OS070		h	TO/D	lan.	140	10.4	<del>-</del>	<del>, _</del>	Ta a I	-	1	_		,	_			
OSUIU		b	ΤΥP	88	46	14	╪	<del> </del>	85	_	58			▙	<u> </u>	32	+	0.0
h	<u>                                     </u>	┸	Ц_	20	317	97	┸	<u> </u>	85-	Ŀţ	58	15		Ŀ.	Ŀ,	221	<u>+                                     </u>	0.0
Rod H02	1.375	б	SMIN	es.	82	20	T	_	15	11	_			<b>-</b>	_	1	<del></del>	lo o
	34.9	<del>-</del> -	CIVILITY T	20	427	138	<del></del>	<del></del>	-	H	+	-		H	-	<del></del>	+	0.0
H02	0.75	0	SMAX	_	70	1.30	<del></del>	<del></del>	15	H	4	•		L	<u> </u>	<u> </u>	‡	0.0
102	19.1	۴	NINITA	1	1	<del>-</del>	<del></del>	f	╀┼	H	4	•		F	<b>!</b>	<del> </del>	╪	0.0
HA4		┖	CLASS	50	463	20	<del>                                     </del>	<del></del>	1.1	ţţ	_}	_		<u> </u>	<u> </u>		1	0.0
H01	0.75	0	SMIN	_	50	20	+	<del>-</del>	15-	Ħ	4		<b>—</b>	ŧ-	<u> </u>	<u> </u>	╪┷╌	0.0
H02	19,1 0.75	<u>_</u>	01.77	20	345 55	138	╀	<u>‡                                    </u>	15	<b>‡</b> ‡	4			<u> </u>	<u> </u>	<u> </u>	<u>-t</u>	0.0
102		P	SMIN	_	_	KD.	<del> </del>	<del> </del>	nu-	H	4	_		L	⊨	<u> </u>	+	0.0
F1 - 1 - 5	19.1	Ц_	<u> </u>	20	378	172	<u> </u>	<u> </u>	10	且	┵		<u> </u>	Ł.	<u>L</u>	<u> </u>	上	0.0
Flat Pro OS050		b	ΗVP	le o	42	lie	T	7	lo e l	_								
79030	1	۳	TYP	68 30	47	15	╄	<del>!                                    </del>	62					F	<b> </b>	<u> </u>	╄—	0.0
ا مرا	<u>l'</u>	<u> </u>		20	324	103	<u> </u>	<u>t</u>	82	H	4	26	<u> </u>	ᆫ	_	<u> </u>	<u> </u>	0.0
Rod H02	1.375	b	SMAX	sa.	50	1	1	ī	<del></del>	П	_,			_		r	1	ha
104	34,6	۴	SIMPA			<del></del>	╀─	╊┈	╀	H	4	-		H	<b>-</b>	<del>                                     </del>	+	0.0
Elst D		<u> </u>	<u> </u>	20	345	<u> </u>	<u> </u>	<u> </u>	<u>t t</u>	tt	<u> </u>	٠	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0.0
Flat Pro OS025		Û	TYP	68	Si	19	<del>,                                     </del>	r	le e l	T 14	,, J.	200		_	,	r—	_	h a
~~uz.J	1	f	, , , , , , , , , , , , , , , , , , ,	_	352	131	<del>-</del> -	<del>                                     </del>	55	-	72	_		F	F	┡	+	0.0
HQ1		Q	TVP	20			<del> </del>	<u> </u>	55	Ц				L	<u> </u>	<u> </u>	<u> </u>	0.0
19 1	0.04	<del>^</del> -	TYP	68	54	40	╄	<del>-</del>	4355		-			H	Ľ	36	+	0.0
	[1	ı	ı	20	372	276	t	F	4355	+	· I	54	-	<b>▶</b>	ŀ	248	ł-	<b>l</b> 0.0

^{*}Fatigue Strength: 100 x 10  6 cycles, unless indicated as [N]X 10 6 .

**Physical Properties** 

	US Customary	Metric	
Melting Point - Liquidus	1700 F	927 C	
Melting Point - Solidus	1650 F	899 C	

### Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys Search

Density	0.306 lb/in ³ at 68 F	8.47 gm/cm ³ @ 20 C
Specific Gravity	8.47	8.47
Electrical Resistivity	39.9 ohms-cmil/ft @ 68 F	6.63 microhm-cm @ 20 C
Electrical Conductivity	26 %IACS @ 68 F	0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu - ft/(hr - ft2-°F)at 68F	116.0 W/m · ºK at 20 C
Coefficient of Thermal Expansion	11.3 ·10 ⁻⁶ per °F (68-572 F)	20.3 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/°F at 68 F	377.1 J/kg · °K at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

**Tempers Most Commonly Used** 

TOTTIPATO MOOT	701111101111
Flat Products	
BAR, ROLLED	H02
PLATE	H02
STRIP ROLLED	NH01 H02 H04 OS025 OS035 OS050 OS070

Other		
RODH01,	H02,	060

Typical Uses
Builders Hardware
Butts, Hinge Brass, Trim, Hardware
Consumer
Watch Backs
Industrial
Screw Machine Products

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Unk to Us Membership Sitemap

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



## Copper.com

上版 你們應以後到你與我們們 無效性對於學 机大流流体 無數 植物流和 持有效性

### **Search Results**

C34500

Last Updated: Apr 28, 2008

### **Chemical Composition**

(%max., unless shown as range or min.)

		ů		Zc
Min./Max.	62.0-65.0	.15	1.5-2.5	Rem.
Nominal	63.5	E.	2.0	34.5

Note: Cu + Sum of Named Elements, 99.6% min.

### **Applicable Specifications**

Product	Specification
Rod	ASTM B453
	SAE J463, J461

### **Common Fabrication Processes**

Machining, Roll Threading and Knurling, Turning

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Not Recommended
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Fair
Capacity for Being Hot Formed	Poor
Machinability Rating	90

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp	Strength		Yield Strength (0.2% offset)	Yield Strength (0.05% offset)	EΙ	Ro Ha	ick rdi	well ness		Влі Нал	neli rd.	Shear Strength	Fatigue Strength	izod Impact Strength
	in.	₩		F	ksi	ksi	ksi _	ksi	y,	8	q.	301	500	500	3000	ksi	ksi	ti-lib
											П	T		Г				

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

•	ma.	L		c _	MPa	MPa	MРа	MPa	1	1	I			l	Î	1	мРа	мРа	þ
Rod															_				
060	1.375	0_	SMAX	38	1		_}_		Ŀ	4:	I	E		<u> </u>	-	Ł	F	<u> </u>	0.0
	34.9	1		20	<u>Ŀ</u> _	٠		<u> </u>	_Ł	45	ŧ.	ŀ	-	ļ	-	ŀ	-	1	0.0
O60	<0.50	Þ	SMIN	68	46	16		E	72	đ.	E	Ŀ			1	Ł			0.0
	<12.7			20	317	110	-	-	þ	٥-	ŀ	F	-	-	F	F	F	F	0.0
HD1	1.375	9	SMIN	68	42	15			2	C 40	Ł	Ē	-	-	F	F			0.0
	34.9		_L_	20	290	103		F	₽	048	Т	F		-	Ŧ	F		-	0.0
H01	<0.50	D	SMIN	68	50	25			1	ol-	t	Ħ			Ŧ	F	<b>†</b>	•	0.0
	<12,7	ļ.,	ł	20	345	172	1	-	11	q.	F	F			7-	ŀ	-	-	0.0
38O	1.375	0	SMIN	68	40	15			34	đ.	Ė	F	,		1	F	1	-	0.0
	34.9		1 -	20	276	103	-	-	В	d-	F	F	-		Ŧ	F	<u> </u>	-	0.0
H02	<0.50	D	SMIN	58	112	50			1	7 50	ŧ.	Ħ			Ŧ	F	Ŀ	+	0.0
	<12.7			20	772	344	1	1	t:	760	Т	П	_		F	F	Ţ	-	0.0
H01	0.75	0	SMAX	88	32	-		-	✝	7:	Ł	H			F	┞	-	-	0.0
	19.1	Г	Ī	20	127	7		-	Ŧ	7:	Г	FI	_		T	F	-	<del>                                     </del>	0.0
Q <b>6</b> 0	0.75	0	SMAX	ម៉	1			<del>.   -  </del>	丰	45	t	H	-		┲	⇟	╆	+	0.0
	19.1	Ι		2e	Ţ	1		-	Ţ	45	Ţ	H	_		Τ.	ŀ	T	Ţ	0.0
H02	<0.50	þ	SMAX	88	150	F		1	+	×	t	H	-	_	┲	F	<del>                                     </del>	+	0.0
	<12.7	Г	$T^{-}$	50	1035	1	$\top$	1	T	90	1	П			T	ŀ	Ĭ T	1	0.0
H01	1.375	O	SMAX	68	62		<u> </u>		⇟	70	1	H			┰	┢	-	╁┈╴	0.0
	34.9	П	T	26	127	-	$\neg$	T	T	70	Т	П	_		Τ.	ŀ	1	1	0.0
H01	<0.50	0	SMAX	68	95	Ţ-		_	╪	t	t	Ħ	_		╆	ナー	<del>                                     </del>	<u> </u>	0.0
	<12.7			20	448	1	7		Ŧ	F	T	Ħ	-		Ŧ	F	-	1	0.0
H02	0.75	Ď	SMAX	68	62	<b>T</b>	1	+	✝	76	†	H	_	-	╪	+	╄	+	0.0
	t <b>9</b> .1			20	427		<u> </u>	Ţ	Ŧ	75	•	Ħ			Τ.	Į.	1	1	0.0
102	0.75	0	SMIN	68	50	20	+	†	1	5 55	_	H	_	_	╬	╁╴	╌	+	G.0
	19,1	Γ		20	345	138	<b>—</b>	ॏ	_	5 5	•	Ħ	-		✝	┞	1	1.	0.0
HQ1	0.75	0	SMIN	68_	50	20	+_	+	_	55	_	H			╆	┢	<del>                                     </del>	+	0.0
	19,1			20	345	138	T-	$\top$	_	55	•	П			T	T			0.0
Q60	0.75	6	SMIN	68	44	15		+	7:	-	۲	H			╁	<del> </del>	1-	+-	0.0
	19.1	Ī		20	303	103		1	2:	-	t	H	_		1	t	t	t	0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1670 F	910 C
Melting Point - Solidus	1630 F	888 C
Density	0.306 lb/in ³ at 68 F	8.47 gm/cm ³ @ 20 C
Specific Gravity	8.47	8.47
Electrical Resistivity	39.9 ohms-cmil/ft @ 68 F	6.63 microhm-cm @ 20 C
Electrical Conductivity	26 %IACS @ 68 F	0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu - ft/(hr - ft2.ºF)at 68F	116.0 W/m · ^o K at 20 C
Coefficient of Thermal Expansion	11.3 ·10 ⁻⁶ per ^o F (68-572 F)	20.3 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

**Tempers Most Commonly Used** 

Other

RODH01, H02, O60

**Typical Uses** 

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Industrial
Valve Stems, Pinions, Adapters, Couplings, Flare Fittings, Gears
Plumbing
Plumbers' Brass Goods, Plumbing Fittings

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects LifeTM

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



## Copperme

到到过期的证券的证券的证券的基础的证券的证券的证券的证券的证据。

### Search Results

C35300 (High Leaded Brass, 62%)

Last Updated: Apr 28, 2008

### **Chemical Composition**

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe ⁽²⁾	РЬ	Zn
Min./Max.	60.0-63.0	.15	1.5-2.5	Rem.
Nominal	61.5	-	2.0	36.5

(1) Cu, 61.0% min. for rod.

(2) For flat products, the iron shall be .10% max.

Note: Cu + Sum of Named Elements, 99,5% min.

#### **Applicable Specifications**

Product	Specification
Bar	ASTM B121
	ASTM B121
Rod	ASTM B453
Sheet	ASTM B121
Strip	ASTM B121

### **Common Fabrication Processes**

Blanking, Machining, Piercing and Punching, Roll Threading and Knurling, Stamping

**Fabrication Properties** 

rabilication riopethes	
Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Not Recommended
	Not Recommended
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Fair
Capacity for Being Hot Formed	Poor
Machinability Rating	90

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

	L		POI	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111000	ured at r			_		٠,	_	<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u>''</u>				
Tempei	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength	Yield Strength (0.5% ext. under load)	Yield Strength (0.2% offset)	Yield Strength (0.05% offset)	ΕI	Ro Ha	rdi	ove ne	:   23	Vickens Hard.	Brli Has	nell rd.	Shear Strength	Fatigue Strength	tzod Impact Strengt
	ın.	%		F	къі	kai	ksi	ksi	16	В	П	F	30T	500	<b>500</b>	3000	kşi	kai	ft-ID
	mm.			c	мРа	MPa	MPa	WРа	T	T	П		Т				MPa	MPa	J
Rod							·	<u> </u>			ч				_		•		
Q60	<0,50	٥	SMIN	88	46	16	F	F	20	E	П	Е	Ĺ		E	F	-	F	0.0
	<12.7		Γ	20	317	110	F		2:0	Г	П					F	-		0,0
Flat Pro	ducts					•		<u></u>											
HD8	0,04	0	TYP	68_	85	62		E.	5	87	Е		74	-			45		0.0
	1			20	586	427	ŀ	ŀ	ß	87	H	-	74	<b>-</b> ]	ŀ	1	310	ŀ	0,0
Rod									_										
H01	1.375		SMIN	68	42	15	<u> </u>		20	Ł	Ц	Ŀ	_	-	ш	Ŀ	<u> </u>	<u> </u>	0,0
	34.B		<u>L</u> .	20	290	103	-	<u> </u>	20	Ŀ	Łl			ŀ		Ŀ			0,0
H01	<0.50	0	SMIN	88	52	25	F	<u> </u>	10	_	Ц	Ц			Ē	F			0.0
	<12.7			20	358	172	<u> </u>	<u> </u>	10	Ŀ	L	Ł	Ł	<u>-</u>	Ŀ	Ŀ	<u> </u>	<u> </u>	0.0
Q60	1.375	0	SMIN	68	40	15			30	Ē	Ы			-	Е	E			0,0
	34.9			20	276	103	<u> </u>	<u> </u>	30		L	Ł	Ł	<u> </u>	L	<u> </u>	<u> </u>	<u>-                                      </u>	0.0
H02	1.375	0	TYP	68	58	45	-	-	25	75	IJ	Е	Ĺ		Ē	Ł	-		0.0
	34.9		l	20_	400	310	ŀ	ŀ	25	75	H	-	4	ŀ ]	ŀ	<u> </u>	ŀ	ŀ	0,0
H02	<0,50	Q	SMIN	58	57	25	ŀ	-	7	ŀ			L	ŧ.		F			0.0
	<12.7		1	20	393	172	-	F	7	ŀ	H	-	ŀ	<b>.</b>	-	F	ŀ	┞	0,0
080	.75	o .	SMIN	38	44	15	-	F	25	Ŀ	E		Į.			E	-	F	0.0
	19.1			20	303	103		-	25	F	H	-	-	-	-	-	-	-	0.0
Flat Pr	oducts										_								
H04	0.64	0	ТҮР	58	74	30	<u> </u>	-	7	30	П	Ш	69			Ŀ	43	<u> </u>	0.0
	1	L		20	510	414		<u> </u>	7	80	łl	ŀ	89	<b>ŀ</b> ]	ŀ	Ŀ	296	<u> </u>	0,0
H01	0.04	0	TYP	36	<del>5</del> 4	40	F.,	-	J8	55	Ð	į	54	·	Ļ	<u> </u>	36	Ŀ	0.0
	1	Ī	Ī	20	372	276	-	F	118	55	łl	-	54	<b>.</b>	┞	ŀ	248	ŀ	0.0
OS035	0.04	0	TYP	68	49	17	-		52	E	E	58	31	-	Ш	Ŀ	34		0.0
	1			20	338	117	-	ŀ	52	F	FI	58	91		-	-	234	F	0.0
Rod				<u> </u>															
H02	.75	0	SMAX	5-8	70		<u> </u>		E	Ŀ	E	Г		<u> </u>	Ы	Ŀ	-		0.0
	19.1			20	483		-	ŀ	Ŀ	Ŀ.	ŀΙ	- ]	Ŀ	-	ŀ	-	ŀ	ŀ	0.0
H02	<0.50	0	SHAX	88	30	<u>L</u>	F	F	E	E	Ø	Е				E	<u> </u>	Ŀ	0.0
L	≈12.7	l	l	50	552	<b>-</b>	ŀ	}	F	F	ŀÌ	$\vdash$	<b> </b>	<b>l</b>	ŀ	F	ŀ	ŀ	0.0
H01	1.375	0	SMAX	38	62	<u>F</u>	E	F	E	E	П	Ē	E	E	Ŀ	E	E		0.0
	34,9			20	427	ļ	F	}	F	F	FĪ	FĪ	-	<u> </u>	F			- -	0.0
H01	<0.50	0	SMAX	68	85		F.		E	Е	D		E		E	E	F		0.0
	<12.7			20	448	I	-	<u> </u>	F	F	П	П	-	<b>├</b> ̄ ̄	F	F _	-	ļ <u> </u>	0.0
H01	.75	D	SMIN	68	50	20	<u> </u>	E	15	E	Ħ	E	Ē		E	Ŀ	F		0.0
	19,1			20	345	138	-	ļ	16	F	П	F	-	F	Γ	F	-	ļ	0.0
H01	75	o	SMAX	68	62		Ŀ		Ė	Г	Ħ	Ħ			E	E_			0.0
	19.1			20	427		-	F	F	F	F		-	ļ		ŀ		-	0.0
Flat Pr	oducts			<u> </u>		<del></del>	-		•		۷				_	<del>-</del>			
H02	0.04	b	TYP	68	51	50	F.	<u> </u>	20	70	Ū	,	65		E	<u> </u>	40	F	0,0
	1			20	421	345	-	F	20	70	П	FĪ	65	-	-	F	276		0.0
Rod											_	_							
H02	.75	b	SMIN	68	55	25	E	F	10	E	Ð				Ē	Ŀ	Ŀ		0.0
	19.1			20	378	172	<b>├</b>	1	10	$\Gamma$	П	П	<b>↓</b> _	<b>-</b> □	Ļ ¯	ŀ	Ļ	<u> </u>	0.0

^{*}Fatigue Strength: 100 x 10  6 cycles, unless indicated as [N]X  $10^6$ .

**Physical Properties** 

	US Customary	Metric	
Melting Point - Liquidus	1670 F	910 C	
Melting Point - Solidus	1630 F	888 C	

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Density	0.306 lb/in ³ at 68 F	8.47 gm/cm ³ @ 20 C
Specific Gravity	8.47	8.47
Electrical Resistivity_	39.9 ohms-cmil/ft @ 68 F	6.63 microhm-cm @ 20 C
Electrical Conductivity		0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu · ft/(hr · ft2.ºF)at 68F	
Coefficient of Thermal Expansion	11.3 ·10 ⁻⁶ per °F (68-572 F)	20.3 ·10 ⁻⁸ per °C (20-300 C)
Modulas of Elasticity in Tension		103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

**Tempers Most Commonly Used** 

Flat Products	
BAR, ROLLED	H02, H04
PLATE	H02
SHEET	O60
STRIP, ROLLED	H01, H02, H04, H06, O60, OS035

Other		
RODH01,	H02,	O60

### Typical Uses

**Builders Hardware** 

Drawer Handles, Drawer Pulls, Hinges

Consumer

Clock Plates and Nuts, Clock and Watch Parts, Bicycle Spoke Nipples, Key Blanks

Fasteners

Nuts, Screws, Rivets

Industrial

Instrument Backs, Automatic Screw Machine Parts, Valve Stems, Pinions, Flare Fittings, Couplings, Adapters, Bearing Cages, Channel Plate, Wheels, Gears, Ratchets

Other

**Engravers Plate** 

Plumbing

Plumbers Fittings, Pipe Fittings, Faucet Seats, Faucet Stems, Plumbers' Brass Goods

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association</u> LTD.

Copper Connects Life™

printed 06/01/2011 11:04AM by Luttie.Boarman p. 130/3

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 4



### Copper.ons

1度 数100% 等地震 物体显示的机器 4种资格从的 完善 4.种种等语数

### **Search Results**

C36000 (Free-Cutting Brass)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu	Fe	Pb	Zn
Min./Max.	60.0-63.0	.35	2.5-3.7	Rem.
Nominal	61.5	-	3.1	35.4

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

repphoable openingations								
Product	Specification							
Bar	AMS 4610							
	ASTM B16							
	SAE J461, J463							
Rod	AMS 4610							
	ASTM B16							
	SAE J463, J461							
Shapes	ASTM B16							
	SAE J461, J463							
Valves	MILITARY MIL-V-18436							
Wire	ASTM B16							

Common Fabrication Processes
Machining, Roll Threading and Knurling

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Not Recommended
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Fair

printed 06/01/2011 11:04AM by Luttie.Boarman p. 132/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 4

Capacity for Being Hot Formed	Fair
Machinability Rating	100

	a i i i ça		pei	463	1111000	ured at I		Yleki	Ë	<del></del>	Ť	<u>, `</u>	/0	120	~		г—		·
	Section	Cold	TVO	L	Tensite	k	Strength	Tieks Stranuth	L	Ro	ve i	CWI	11	Vickens	Bris	neti	Shear	Fatigue	1200
emper		Work	Min	Temp	Strength	(0.5% ext. under load)	KU.2%	(0.06% (feet)	Εı	H					Har	d.	Strength	Strength'	impact Strengt
	in.	¥.		F	ksi	ksi	ksi	kar	7.	6	þ	F	30T	500	500	3000	ksi	KSÌ	H⊣b
	mm.			С	MPa	мРа	MPa	MPa									MPa	MPa	þ
Rod		6	TVD.	20						he	Т	_			_	_	<del></del>		0.0
102	1.5 38 1	-		68 20	<del></del>	<del></del>	<del>-</del>	<del></del>	F	65 65		۲	H	<del>-</del>	F		<del>-</del>	<del></del>	0.0
204	0.375				├				┡	-	-	H	H	<u> </u>	-	<del>[</del> —	34		0.0
104	12.7	-	111	38 20		<u> </u>	F	<del></del>	F	76 78	•	Н	H	<del></del>	f	┢	234	<del></del>	0.0
102	0.75	0	MIN	58			<u> </u>		┡	70	-	F	-		⊱	<u> </u>	2.54		0.0
102	19,1	<u> </u>		20					f	70	-	Н	_	ᡛ	┨	t	<del></del>		0.0
H04	0.625	0	SMIN		65	30	<del>[                                    </del>	╌	6	Ľ	H	-	_		⊱	[			0.0
107	15.9	<u> </u>	OWNER	20	450	205	[		Ĕ	E	t			_	t				0.0
102	3.0		SMIN		45	15	╌		20	₽	t	┝	┝	├	⊢	╌	<del>                                     </del>		0.0
	76.2	<u> </u>	-	20	310	105	<u> </u>		20	•	H		T	t.	L	_			0.0
060	1.5	0	SMIN		44	18	<del></del>	-	20	_	Н	۲	H		_	-	-	<del>-</del>	0.0
	38.1			70	305	18			20	•	Г	Г	F	Ι-	F	_	1	Ι	0.0
H02	<0.50	0	ТҮР	68	<del></del>	<del></del>	<u> </u>	<del></del>	۲	65	F	۲	F	<del>├</del> ┈─	ļ.	┡	32	20	0.0
	12.7			20	F	-	Ι	ļ.	F	65	-	Г	F	-	F	F	221	138	0.0
9ar	_			1	<u> </u>			-	_	_	_	_			<u> </u>		I	•	
H02	<0.50	G	SMIN	68	50	25	ŀ	F	ic	ŀ	ŀ	Ŀ.,		F	E	F	-	-	0,0
	<12.7			50	345	170	-	}	10	1	F	F	F	-	ŀ	-	F	ŀ	0.0
060	1.5	0	SMIN	68	40	15	ŀ	ŀ	25	Ł	E			F	E	-	-	<u> </u>	0.0
	38.1		_	20	275	105	ŀ	-	25	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	┡	ŀ	ŀ	0.0
Shapas					· .						Ξ								
H01	0.5	11	TYP	68	56	45	<u> </u>	<u> </u>	-	62	-	<u> </u>	▙	<u> </u>	Ł	▙	33		0.0
	12.7		<u> </u>	20	386	310	<u> </u>	<u> </u>		62	Ł	Ŀ	<u> </u>	<u> </u>	Ł	<u> </u>	228		0.0
M30	0.5	0	TΥΡ	68	49	18	⇇──	<u> </u>	þQ	_	Ł	38	<u> </u>	<u> </u>	Ł	<u> </u>	30	<u> </u>	0.0
	12.7	L		20	338	124	<u> </u>	<u> </u>	50	<u>Ł</u>	Ł	68	乚	<u>t.                                    </u>	Ł_	<u> </u>	207	<u> </u>	0.0
Rod	6.6	6	Cosain	L. n	le o	Lin.			T. /	<u> </u>	_	,	_		_			r -	h o
H02	1.5	<u> </u>	SMIN	_	50	20	<del> </del>	<del></del>	15	-	ŀ	Ŀ	H	<del>-</del>	F	<u> </u>	•	<del>-</del>	0.0
040	38,1	_	63711	20	345	140	<del> </del>	<u> </u>	15		ŀ	Ŀ	<u> </u>	<u> </u>	Ŀ	ļ	<u> </u>	<del>-</del>	0.0
060	<1 -05 4	0	SMIN		48 330	20 124	<del>-</del>	<del> </del>	15	7	H	ŀ	H	<del>-</del> -	F	<del> </del>	<del></del>		0.0 0.0
	<25.4	L	<u> </u>	50	p30	124	<u> </u>	<u> </u>	15	L	L	Ľ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ĭ	<u> </u>	D.U
Bar H02	1.5	6	TYP	88	l	L .	T.	1.	L	60	L			L	Г	1	Į.	<u> </u>	0.0
	38.1	<u> </u>	<del></del>	20	<u> </u>			1	t	so	-	t	H		t	┖		<u> </u>	0.0
HD2	<0.50	0	TYP	68	╁	<u>.                                    </u>	<del></del>	<del>                                     </del>	t	35		t	H	l	H	╌	<del></del>		0.0
	<12.7	<u> </u>	· · ·	20	<del>.                                     </del>		<u> </u>		t	85	•		ļ —			!-			0.0
Rod	1	Ц	<u> </u>	<u> </u>		<u>t                                    </u>	<u> </u>		_	<u>- ·</u>	_			<u> </u>	<u> </u>	_	1	L	1-7-
H02	4.5	0	SMIN	38	40	15	ŀ	Ŀ.	20	25	Ł	F	·	ŀ	-	ŀ	F	-	0.0
	114.3			20	275	105	F	<u> </u>	20	25	F	F	F		F	F	F	F	0.0
H04	0.25	c	TYP	68	Ē	E	F	<u> </u>		30	ŀ	E	E	E	E	F _	38	F	0.0
	6,35			20	1	F	1	F		30			F	<u> </u>	F	-	262	<u> </u>	0.0
Flat Pro	ducts									_		_	_						
H02	0.25	11	TΥP	58	56	45	-	<u> </u>		62			Ł.	·	E		33	<u> </u>	0.0
	4.76	<u> </u>		20	386	310	<u> </u>	<u> </u>	20	<b>l</b> 02	Ł	Ŀ	Ŀ	<u> </u>	Ł	Ł	228	<u> </u>	0,0
Rod	le 455		la com		L .	E				Ţ	Ē	F			F	_			
104		٥	SMIN		70	35	キ—	<del> </del>	Ł	-	Ł	È	i—	<del>                                     </del>	╄	ţ	<del></del>	<del>                                      </del>	0.0
	12.7			20	180	240	<u> </u>	Ļ	Ľ.	-	L	L	<u> </u>	<u> </u>	上	ļ	<u> </u>	<u> </u>	0.0
H02	0.75	0	SMIN		55	25	<del> </del>	<del>                                     </del>	10	•	Ł	_	Ŀ	<del> </del>	Ŀ	-	34	<del></del>	0.0
	19.1	<u> </u>	<u> </u>	20	380	175	<u> </u>	<u> </u>	10	_	Ŀ	Ŀ	ㄴ	<u> </u>	上	<u> </u>	234	<u> </u>	0.0
H02	3.0	b	TYP	38	<del> </del>	<del> </del>	<u> </u>	<del>                                      </del>	Ł	55	•	F	<b>!</b>	<u> </u>	Ł	<u> </u>	<del> </del>	<del> </del>	0,0
	76.2			20	L	L	L	L		55				L	•		L	Ł	0.0

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 4

O60	<b>K1</b>	þ	SMIN	68	44	18			120	H	ŀŀ	-  -	ŀ	ı		ŀ	ļ.	ŀ	0.0
	<25.4			50	305	125	1	_	20	Г	- ]	Ŧ	<u> </u>	Ţ		F	1	Ţ.	0.0
Rod							<del>^</del>			ч	_				-	_	-		
Q60	<1	р	TYP	68	Ŀ		F		ŀ	28	·		÷			F	30	·	0.0
	<25.4	Ι		20	1	- I	1 T		F	28	F		Τ-			F	207	-	0.0
H04	0.25	þ	SMIN	68	80	45	F			П	-	Œ	1		_	F	1	1	0.0
	6.35			20	550	310	T-		F	П	- [	Ŧ	F	Ţ		Γ	F	Ŧ	0.0
O80	2.5	D	SMIN	68	40	15_			25		Ħ	Ŧ	1				ļ —	+	0.0
	53.5	Г		20	40	15	Ţ.	_	25	П	П	Ŧ	Ţ			1	1	Ţ.	0.0
H02	<0.50	þ T	TYP	68	57	25			7	Ħ	Ħ	✝	╪	_		┞	+	┮	0.0
	12.7		Т	20	395	170	Ţ		7	П	7	Ť	T	$\neg$		Г	1	7	0.0
Bar		•					<u> </u>	_		ш	_				_		•		
:102	3	0	SMIN	68	40	15	]-		20	Ë	Ð	Ē	F	}		ŀ _	J	F	0.0
	76.2			20	275	105	1		20	-	-	Ŧ	1	- 1		-	Ţ	1	0.0
H02	1.5	0	SMIN	68	45	17			15			Ŧ	F			F	-	ŀ	0.0
	38.1			20	310	115	$\top$		15	П	Π.	T	F			F	Ţ.	T	0.0
O60	1.5	0	TYP	60	Ŧ	Ţ	1		+	22	Ħ	╈	+-		_	┢	ㅑ	╁┈	0.0
	38.1			20	Ţ	T -	Ţ.		Т	22	ī	T	L				1	1	0,0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1650 F	899 C
Melting Point - Solidus	1630 F	888 C
Density	0.307 lb/in ³ at 68 F	8.5 gm/cm ³ @ 20 C
Specific Gravity	8.5	8.5
Electrical Resistivity	39.9 ohms-cmil/ft @ 68 F	6.63 microhm-cm @ 20 C
Electrical Conductivity		0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu - ft/(hr - ft2-ºF)at 68F	116.0 W/m · ºK at 20 C
Coefficient of Thermal Expansion	11.4 ·10 ⁻⁶ per ^o F (68-572 F)	20.5 ·10 ⁻⁶ per ^o C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/°F at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension		96500 MPa
Modulus of Rigidity	5300 ksi	36500 MPa

### **Tempers Most Commonly Used**

	Products		
BAR	, DRAWN	H01,	H02

Other		
ROD	H02,	O60
SHAPES	HQ1,	H02

Typical Uses Architecture Terrazzo Strip

Automotive

Sensor Bodies, Thermostat Parts, Fluid Connectors, Threaded Inserts for Plastic

**Builders Hardware** 

Lock Bodies, Fittings, Hardware

Consumer

Hot Combs (to Straighten Hair)

**Fasteners** 

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

printed 06/01/2011 11:04AM by Luttie.Boarman p. 134/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4

Screws, Nuts, Bolts

Industrial

Faucet Components, Pinions, Automatic Screw Machine Parts, Pneumatic Fittings, Gears, Nozzles, Valve Stems, Valve Trim, Valve Seats, Gauges, Fluid Connectors, Screw Machine Products, Adapters, Unions Plumbing

Faucet Stems, Plumbers' Brass Goods, Faucet Seats, Plumbing Fittings

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the International Copper Association, LTD.

Copper Connects LifeTM

printed 06/01/2011 11:04AM by Luttie.Boarman p. 135/30

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



## Copperies

### **Search Results**

C37700 (Forging Brass)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu	Fe	Pb	Zn
Min./Max.	58.0-61.0	.30	1.5-2.5	Rem.
Nominal	59.5		2.0	38.0

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification_
Bar, Forging	ASTM B124
Forgings, Die	AMS 4614 ASME SB283 ASTM B283 SAE J461, J463
Rod, Forging	AMS 4614 ASTM B124
Shapes, Forging	ASTM B124

### **Common Fabrication Processes**

Hot Forging and Pressing, Hot heading and upsetting, Machining

**Fabrication Properties** 

Suitability
Excellent
Good
Not Recommended
Not Recommended
Not Recommended
Not Recommended
Not Recommended
Fair
Poor
Excellent
100

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

6/23/2008

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

Machinability Rating	80
----------------------	----

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Wark	Typ/ Min	Temp	Tensils Strength		Strength (0.2%	Yleid Strength (9.06% offset)	E	Ro Hi	ock:	MP() teda	Vickens Hard.	Brir Han	n <del>e</del> ll d.	Shear Strength		izod impact Strength
	in.	76		۴	ksi .	ksi	kşi	\si	%	В	CF	301	500	500	3000	ksi	ksi	H-ID
	mm.			υ U	MPs	MРа	мРа	MPe	Γ	П	Т	П				MPa	MPa	j
Shapes													•				_	
M30	1	0	TYP	68	52	20	-		4.	Ħ	7	3 <b>-</b>			-		-	0.0
	25.4			20	359	138			45	П	. 72	<u>.</u>	-					0.0
Rod											-						·	<u> </u>
M30	t	0	TYP	68	52	20			45	IJ	- 76	<u> </u>	L.		-	F		0.0
	25.4			20	359	138		-	45	H	. 71	<b>.</b>						0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1640 F	893 C
Melting Point - Solidus	1620 F	882 C
Density	0.305 lb/in ³ at 68 F	8.44 gm/cm ³ @ 20 C
Specific Gravity	8.44	8.44
Electrical Resistivity	38.4 ohms-cmil/ft @ 68 F	6.38 microhm-cm @ 20 C
Electrical Conductivity	27 %IACS @ 68 F	0.158 MegaSiemens/cm @ 20 C
Thermal Conductivity	69.0 Btu · ft/(hr · ft2·°F)at 68F	119.4 W/m · °K at 20 C
Coefficient of Thermal Expansion	11.5 ·10 ⁻⁶ per ^o F (68-572 F)	20.7 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · °K at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

### **Tempers Most Commonly Used**

Flat Products		
BAR, DRAWN	H02,	M20
BAR, ROLLED	H02,	M20

Other			
		M20,	M30
SHAPES	M30		

### Typical Uses Builders Hardware

Door Handles, Decorative Knobs, Furniture Hardware

Building

Valve Bodies for Refrigeration, Chemicals

Consume

Golf Putters, Valve Bodies for Scuba & Propane Spray Tanks, Valve Bodies for Agricultural Spray Tanks

**Electrical** 

Covers, Fuse Bodies

Industrial

Valve Components, Forgings and Pressings of All Kinds

printed 06/01/2011 11:04AM by Luttie.Boarman p. 138/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

### Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Unk to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD.

Copper Connects Life™ orinted 06/01/2011 11:04AM by Luttie.Boarman p. 139/3

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



## Copperant

<u>表面和异物色线 的性素精性的能力 有种结构 等多类特种 等外流</u>

### **Search Results**

C41100 (Tin Brass)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

			Рb		Zn
Min./Max.	89.0-92.0	05	.09	.307	Rem.
Nominal	91.0	,	<b>.</b>	.50	8.5

Note: Cu + Sum of Named Elements, 99.7% min.

**Applicable Specifications** 

Product	Specification
Bar, Rolled	ASTM B591
Bearings and Bushings	MILITARY MIL-B-13501
Bushing Stock	MILITARY MIL-B-13501
Plate	ASTM B591
Sheet	ASTM B591
Strip	ASTM B591
Strip, Flexible Hose	ASTM B508
Wire	ASTM B105

### **Common Fabrication Processes**

Blanking, Drawing, Forming and Bending, Piercing and Punching, Shearing, Spinning, Stamping

**Fabrication Properties** 

rabilication Froperties	
Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Good
Coated Metal Arc Welding	Not Recommended
Spot Weld	Fair
Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Good
· · · · · · · · · · · · · · · · · · ·	

Machinability Rating

. and the	Section Size in.	Cold Work	Min	Temp	Tensile Strength	Yield Strength (0.5% ext. under load) ksi	offset)	Yield Strength (0,06% offset) ksi	ũ	Rockwell Hardness			Vickens Hard,	Brinell Hard,		Shear Strength	Fatigua Strength	izod Impact Strengti	
									7.	В	C.	30	П	500	500	3000	ksi	ksi	ft-lb
	mm.			c	MPa	MPa	MPa	MPa	Г	Г	T	T	T				MPa	MPa	Ú
Flat Pro	ducts				<u> </u>	<del></del>	•		۲.		_					•	<b>!</b>	l	I .
OS015	0.04	0	TYP	68	42	12	15		40	Ē	- 6	8 3	2]		F	ŀ	34		0.0
-	1			20	290	83	103	-	40	Г	- 6	933	3	-			234		0.0
i02	0.04	D	TΥP	68	55	47	53	-	14	61	#	52	7			_	38		0.0
	1			20	379	324	365		14	81	Ţ	58	,	-			248		0.0
H06	0.04	0	TYP	68	72	60	70		•	70	#	65	,	-	┢	H			0.0
	3			20	496	414	483		L	79	T	69	-			L			0.0
H03	0.04	0	TYP	68	50	52	58			70	+	6/	_		L-				0.0
	1		_	20		359	400	_	6	70	-	84	-		_				0.0
OS035	0.04	0	ΤΥΡ		39	11	12		43			<u>52</u> 1			Н		33	-	0.0
	1			20	269		83		43	Н	-	021	-	_	H		228		0.0
104	0.04		TÝP			55	64		5	-	H	67	_		Н		40		0.0
	1		-	20		379	441		5	7=	t	67	-		$\vdash$		276		0.0
Vire	<u> </u>		Ь.		ļ. <b>-</b> -	<u> </u>			<u> </u>	רא		ν.	_		_		<u></u>		٧.٧
	0.1	95	TYP	68	102		_		ī		T	T	٦		_				0.0
	2.54		_	20	703				ì	П	,	1	T					-	0.0
Flat Pro	ducts	لسا		·					H	L		_	_		_	Ц.			F
H08	0.04	0	ΪΫ́Р	68	78	70	75		3	<b>B</b> 2	Ŧ	71	Т	-	<u> </u>	-	_	-	0.0
	1			20	538	483	517		3	B2	7.	71	Ţ	,	L.		_		0.0
Wire											_	_	_		-			L	
H04	0.25	70	TYP	68	B1 :				2	-	-  -	F	Ţ		-	-	-	-	0.0
	6.35			20	558	- "			2	Į.		F	Ţ				-	-	0.0
H04	0.05	98	TYP	88	106				Đ	H	†	╆	7		_		-		0.0
	1.27			20	731	-			9	П	.T.	F	T		١.,	_			0.0
Flat Pro	ducts					<u> </u>			-	ш	_								
DS025	0.04	<b>0</b>	TYP	68	41	12	14		41	-	- 6	6 27	- [			-			0.0
	i			20	283	83	97		41	- 1	- 6	6 27	·						0.0
·10	0.04	0	ΤΥP	68	78	72	76		2	83	Ŧ	71	†						0.0
	1			20	538	496	524	-	2	83	Ţ	71	Ţ			, 1	_		0.0
101	0,04	C	TYP	68	48		41			50	_	51	_						0.0
	1			20			283			50	+	51	-						0.0

^{*}Fatigue Strength: 100 x 10 ⁸cycles, unless indicated as [N]X 106.

	US Customary	Metric				
Melting Point - Liquidus	1905 F	1041 C				
Melting Point - Solidus	1870 F	1021 C				
Density	0.318 lb/in ³ at 68 F	8.8 gm/cm ³ @ 20 C				
Specific Gravity	8.8	8.8				
Electrical Resistivity	32.0 ohms-cmil/ft @ 68 F	5.32 microhm-cm @ 20 C				
Electrical Conductivity	32 %IACS @ 68 F	0.187 MegaSiemens/cm @ 20 C				
Thermal Conductivity	75.0 Btu · ft/(hr · ft2·ºF)at 68F	129.8 W/m · °K at 20 C				
Coefficient of Thermal Expans	sion 10.2 · 10 ⁻⁸ per ^o F (68-212 F)	18.4 · 10 ⁻⁶ per °C (20-100 C)				
Specific Heat Capacity	0.09 Btu/lb/°F at 68 F	377.1 J/kg ⋅ ºK at 293 K				
Modulas of Elasticity in Tension	n* 18000 ksi	124000 MPa				
Modulus of Rigidity	6700 ksi	46200 MPa				

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

*For annealed alloys.

**Tempers Most Commonly Used** 

Flat Products													
BAR, ROLLED	H02,	H03,	H04						-				
SHEET	H00,	H01,	H02,	H03,	H04,	H06,	H08,	H10,	OS015	, OS02	5, OS	035,	OS050
STRIP, ROLLED	H01,	H02,	H03,	H04	H06,	H08,	H10,	OS01	5, OSC	25, OS	035,	050	50

Other WIREH04

Typical Uses

Electrical

Fuse Clips, Terminals, Conductors, Electrical Connectors

Industrial

Thrust Washers, Flexible Hose, Bushings, Bearings, Bearing Sleeves

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association</u>, LTD.

Copper Connects Life^{IM}



### Copper one

### **Search Results**

C42200

Last Updated: Apr 28, 2008

**Chemical Composition** 

 Cu
 Fe
 Ph
 P
 Sn
 Zn

 Min./Max.86.0-89.0
 05.05.35.8-1.4
 Rem.

 Nominal
 87.5
 1.1
 11.4

Note: Cu + Sum of Named Elements, 99.7% min.

Applicable Specifications

Product	Specification
Bar, Rolled	ASTM B591
Plate	ASTM B591
Sheet	ASTM B591
Strip	ASTM B888, B591

### **Common Fabrication Processes**

Blanking, Drawing, Forming, Piercing and Punching

**Fabrication Properties** 

Paprication Properties	
Joining Technique	Suitability
Soldering	Excellent
Brazing	Fair
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Excellent
Spot Weld	Good
Seam Weld	Fair
Butt Weld	Good
Capacity for Being Cold Worked	dExcellent
Capacity for Being Hot Formed	Good
Machinability Rating	30

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	(emp	Tensile Strongth	Yisid Strength (0.5% ext. under load)	Strength (0.2%	Yield Strength (0,05% offset)	ΕI	Rockwell Hardness	Vickens Hard.	Bdnell Hard.	Shear Strength	Fatigue Strength	izod Impact Strength
	1					unuer ivau	(O) (ART)	C112 0()							

	in.	%	1_	F	ksi	ksi	ksi	kal	145	В	d	F	36T	500	500	300	Oksi	ksi	ſt-lb
	mm.		T	<b>c</b>	MPa	MPa	MPa	MРа	T		П				7	T	MPa	МРя	J
Flat Pro	oducts									-				•					
OS015	0.04	0	TYP	BB.	46	17	19		44	E	-	75	40	-	_[-	F	F	T	0.0
	1		1	20	317	117	131	-	44	Γ	-	7ŝ	10	F	Ţ	F	-	F	0.0
H02	0.04	D	TYP	68	6Ü	51	57	1	12	70	П	T	84	-	1	┇	厂	+-	0.0
	1			20	414	352	393	Ţ. —	12	70		П	64		Τ,	Į.	Ţ.		0.0
OS035	0.04	0	TYP	38	43	15	14	1-	46	F	Н	ūδ	27	_	+-	┢	+	<del>-</del>	0,0
	1		T	20	296	103	97	Ţ-	46	Г	П	55	27		T	Ι-			0.0
HQS	0.04	0	TYP	38	80	85	76	+	В	84	Н	H	72	_	╁	!			0.0
	1		1	20	552	469	524	1.	- 6	84	П	-1	72		_	ţ.		<u> </u>	0.0
ноз	0.04	0	ΤÝΡ	58	66	55	94	╪╼	6	-	Н	_	58	_	+-	╌	<del>[</del>	┿	0.6
	1			20	455	379	441	1	6	77	H	-	68		╅	ţ.		<b>T</b>	0.0
104	0.04	0	ΤÝΡ	88	73	B5	70	+-	_	В	Н		70		╁╌	╌	╁─	<del>-</del>	0.0
	1	1	1	20	503	448	483	_	1	В	H	-	70		1	t	1	1	0.0
108	0.04	6	ΤΥΡ	_	87	73	81	<del>-                                    </del>		67	Н	_	73	_	<del>-[-</del>	<del>[                                    </del>	<del>[</del>	-{	0.0
	1	+		20	500	503	ŝ58	+-	_	67	H	-	73	_	┰	F-	<del></del>		0.0
OS025	0.04	0	TYP	_	44	16	15	<del>-[</del>	45	_	Н	70			╌	<del>[ -</del>	<u> </u>		0.0
	1	Ť	+ ''	20	303	110	103	Ŧ	45	-	н	70	÷	Ε	╌	┡	<del>-</del>	+	0.0
110	0.04	6	TYP	_	38	75	84	-		_	Ц	_		_		<b>!</b> —	ļ	_	
110	1	<del>ſ</del> -	117	20	607	617	_	╄─	+	56 26	H	-	74	<u> </u>	╁	┞	<del> </del>	+	0.0
101	0.04	0	TYP		52 52		579	ᅷ—	_ P	86	H	_	74		上	ᆫ	<u> </u>	<u> </u>	0.0
וטר	u.u4	<del>-  -</del>	+	_	<del></del>	40	39	+	_	8	H	-	54	_	╄	⇤	<u> </u>	<del> </del>	0.0
	1		ــــــــــــــــــــــــــــــــــــــ	20	259	276	269	ŀ	30	56	⊦ŀ	.	54	ŀ	ŀ	ŀ	ŀ	ŀ	0.0

^{*}Fatigue Strength: 100 x 10 ⁸cycles, unless indicated as [N]X 10⁸.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1905 F	1041 C
Melting Point - Solidus	1870 F	1021 C
Density	0.318 lb/in ³ at 68 F	8.8 gm/cm ³ @ 20 C
Specific Gravity	8.8	8.8
Electrical Resistivity	33.0 ohms-cmil/ft @ 68 F	5.49 microhm-cm @ 20 C
Electrical Conductivity*		0.181 MegaSiemens/cm @ 20 C
Thermal Conductivity	75.0 Btu · ft/(hr · ft2·°F)at 68F	
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tensi	on**18000 ksi	124000 MPa

^{*}To achieve a conductivity of 31% IACS, phosphorus shall be .07% maximum.

**Tempers Most Commonly Used** 

Tempera most o	zonniomy oseu
Flat Products	
BAR, ROLLED	H02, H03, H04
SHEET	H01, H02, H03, H04, H06, H08, H10, OS015, OS025, OS035
STRIP, ROLLED	H01, H02, H03, H04, H06, H08, H10, OS016, OS025, OS035

# Typical Uses Electrical Connectors, Fuse Clips, Terminals, Electrical Connectors Fasteners Spring Washers

^{**}For annealed alloys.

printed 06/01/2011 11:04AM by Luttie.Boarman p. 146/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

#### Industrial

Bushings, Contact Springs, Sash Chain

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD. Copper Connects Life^{rM}



### Copperam

上版書類的表記 经制定 新疆 型的磁性系统 经基础的 网络马斯特 的

### **Search Results**

C44300 (Admiralty, Arsenical)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

					Sn ⁽¹⁾	
Min./Max.	<u>70.</u> 0-73.0	02-06	.06	07	.8-1.2	Rem.
Nominal	71.0	.04	,	·	1.0	28.0

(1) For tubular products, the minimum Sn content may be .9%. Note: Cu + Sum of Named Elements, 99.6% min.

**Applicable Specifications** 

Product	Specification
Plate, Clad	ASTM B432
Plate, Condenser Tube	ASME SB171 ASTM B171
Tube	ASTM B135
Tube, Condenser	ASME SB111 ASTM B111
Tube, Finned	ASME SB359 ASTM B359
Tube, U-Bend	ASME SB395 ASTM B395
Tube, Welded	ASME SB543 ASTM B543

### **Common Fabrication Processes**

Bending, Forming, Machining

**Fabrication Properties** 

Joining Technique	Suitability							
Soldering	Excellent							
Brazing	Excellent							
Oxyacetylene Welding	Good							
Gas Shielded Arc Welding	Fair							
Coated Metal Arc Welding	Not Recommended							
Spot Weld	Good							

Seam Weld	Not Recommended
Butt Weld	Good
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Fair
Machinability Rating	30

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tenzile Strength	Svength	Strangth (0.2%	Yield Strength (0.05% offsat)	Εı	Ro H	oc k	WB nes	() ()	Vickens Hard.	Brli Har	neli d.		rangue Steventh	izod Impact Stren <del>gti</del>
	п.	<b>3</b> 9		ш	hsi	ksi	ksi	ksi	ж,	8	CF	F	01	500	500	3000	kei	ksi	t⊰b
	mm.			c	MPa	MPa	MPa	мРа	Г	П	T	T					мРа	MPa	J
Plate													_		_				
M20	1	0	TYP	68	48	18			<b>3</b> 5	ŀĪ	٦.	₫-		ļ.	F		F	-	0.0
<u>.</u>	25.4			20	031	124		-	55	H	- 7	d-			F				0.0
Wire									•	_	_	_							
OS015	80.0	0	TYP	88	55		-		60	П	T	Ŧ		<u>-                                    </u>	F	F	F	-	00
	2			20	379		-		60	F.	Ŧ	ŀ				-	-	-	0.0
Tube									_	_	•	_			_			ļ	
OS025	0.0	0	ΤŸΡ	68	53	22	,		65	П	Ŧ	5 5	7	-	F	-	F		0.0
	0.0			20	365	152		_	65	IJ	17	533	7	-			-		0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1720 F	938 C
Melting Point - Solidus	1650 F	899 C
	0.308 lb/in ³ at 68 F	8.53 gm/cm ³ @ 20 C
Specific Gravity	8.53	8.53
Electrical Resistivity	41.5 ohms-cmil/ft @ 68 F	6.9 microhm-cm @ 20 C
Electrical Conductivity		0.146 MegaSiemens/cm @ 20 C
Thermal Conductivity	64.0 Btu · ft/(hr · ft2· ^o F)at 68F	110.8 W/m · ºK at 20 C
Coefficient of Thermal Expansion	11.2 ·10 ⁻⁶ per °F (68-572 F)	20.2 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity		377.1 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	16000 ksi	110000 MPa
Modulus of Rigidity	6000 ksi	41370 MPa

### Tempers Most Commonly Used

Flat Products PLATE M20

Other	
TUBE	OS025
WIRE	O\$015

### Typical Uses

Industrial

Evaporator Tubing, Heat Exchanger Tubing, Condenser Tube Plates, Distiller Tubes, Oil Well Pump Liner, Ferrules, Bourdon Tubes, Condenser Tubes

Plumbing Strainers printed 06/01/2011 11:04AM by Luttie.Boarman p. 150/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

### Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Cooper Association, LTD.</u>

Copper Connects Life^{IM}



### Copper.on

文件 机压抑光体 曲加加层 表明 阿思索斯氏三多 咖啡 氯化树脂 等距 对地震器 華寶女林

### **Search Results**

C46400 (Naval Brass, Uninhibited)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

		E			Zn
Min./Max.	59.0-62.0	10	.20	.50-1.0	Rem.
Nominal	60.0			.7	39.2

Note: Cu + Sum of Named Elements, 99.6% min.

**Applicable Specifications** 

Product	Specification
Bar	AMS 4611, 4612 ASTM B21 FEDERAL QQ-B-639 SAE J463, J461
Bar, Forging	ASTM B124
Bolts	ASTM F468
Forgings, Die	ASTM B283
Nuts	ASTM F467
Plate	FEDERAL QQ-B-639
Plate, Clad	ASTM B432
Piate, Condenser Tube	ASME SB171 ASTM B171
Rod	AMS 4611, 4612 ASTM B21 SAE J463, J461
Rod, Forging	ASTM B124
Screws	ASTM F468
Shapes	ASTM B21
Shapes, Forging	ASTM B124
Sheet	FEDERAL QQ-B-639
Strip	FEDERAL QQ-B-639 SAE J461, J463
Studs	ASTM F468
Wire, Metallizing	MILITARY MIL-W-6712

printed 06/01/2011 11:04AM by Luttie.Boarman p. 153/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 4

Common Fabrication Processes
Blanking, Drawing, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Hot Heading and Upsetting, Shearing

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended
Spot Weld	Good
Seam Weld	Fair
Butt Weld	Good
Capacity for Being Cold Worked	
Capacity for Being Hot Formed	Excellent
Forgeability Rating	90
Machinability Rating	30

Mechanical Prop	perties (measure	d at room tem	perature, 68 F (20 C)

	T	<del>' ' '</del>	7 7 7	1600	7 (1110-02	Suicu at			110	ш	e e t	3, 0	30 I	FIZU		<u> </u>			
Tempe	Section Size	Cold Work	Typ Min		Tensile Strength	Strength		Yield Strength (0.05% offset)	ΞI	Ro Hz	ock	een Pen	‼ Vi ⊯ H:	ickens ard.	Bri Ha	nell rd.	Shear Strength	Fatigue Strength	tzod Impact Strengt
	in.	% —	L	F	ksi	ksi	ksi	ksi	%	В	С	30	) T 50	00	500	3000	ksi	ksi	ft-fb
	മ്പമ്പ.	L_		С	MPa	MPa	MPa	MPa		Γ		Π					MPa	MPa	J.
Tube						_			•									1	-
H80	0.0	35	TYP	_	88	<b>3</b> 6	,	_	18	35	Ł	ŀ	Œ		Ы	F		-	0.0
	0,0	L		20	607	455	<u> </u>	ŀ	18	95	H		F		F	-	-		0.0
	oducta																		
050	0.04	0	ΤΥΡ	_	62	30		<u> </u>	40	Ġί	Ð	- 5,	Ŀ		L	F	41		0.0
	<u>†</u>			20	427	207	ŀ	ŀ	40	60	FT	- 5	, F		L	,	293		0.0
Rod																			1
H01		8	TYP	_	57	40			35	75	$\Box$		Ŧ		Ш	Ŀ	43		0.0
	51			20	462	278	-		35	75	П		F				296		0.0
O50	1	0 ,	TYP	58	63	30	_		40	60	Н	†	✝		Ε-	$\vdash$	42		0.0
	25,4			20	434	207		,	40	80	П	T	T			_	290		0,0
C80	1	0	түр	68	57	25		_		55	H	+	╁		H		40		0.0
	25.4			20	393	172			47.		-	1	十			•	276		0.0
Q <u>6</u> 0	0.25	0	Τγρ	68	58	27	_		45			t	<del>-</del>				40		0.0
-	6.35			20	400	186			45				t				276		0.0
H01	0.25	10	ΥP	68	70	48			25				╅╴	-		-	43		0.0
***	6.35			20		331			25		H	Ŧ	┲	$\neg \dashv$		_	298		_
Flat Pro	xlucts		_							00							490	·	0.0
V120		Ď	TYP	68	55	25			5n	5.5	Π.	55					40		0.0
	25,4			20	379	172				_	•	55	_				276		0.0
060	0.25	0	ΤΥΡ			25				_	_	55	_		_		40		
	5.35		_	Į		172			49	_	_	55	_		-	-		_	0.0
₹od		ليب		4,0	100	172			48	ΟĐ	ŀ	93	ŀ.		•	`	276	•	0.0
	0.25	20	TYP	68	80	57	1		20	oci	τ	Ŧ	Т		_		45		
	6.35		_	_	-	393			20	_	Ŧ	┢	╄		-	ightharpoonup	310		0.0
lat Pro			_			000			۷Y	9	ľ	Ϊ	ŀ.		•		310		00
050		0	TYP	68	90	28		_	15	c cl	τ	56	$\overline{}$		_	<u> </u>	41		0.0
	6.3 <del>5</del>		$\overline{}$			193			_	-	-	-	╄						
Rod							[		."	"1	1	58	1				283	·	0.0
	1 1	9 1	TYP	68	59	18	. 1		27	7 g T	Т	T.	7		_	r	13	<del>- ,</del>	
	25,4	寸		_	_	317			27 27	_	_	F	チ		Н	_			0.0
_	2	<del>, ·</del>	ΪΥΡ			28			-	_	_	_	╄		_		296		0.0
	┡╌╌╂	<del>-  </del>	117	υQ	<b>υ</b> Δ	40			13	Ч	‡	Ľ	ŧ.		_		12		0.0

	<b>6</b> 1	1		20	427	193	ŀ	ŀ	kakal	- 1	1.	290	0.0
H02	1	20	TYP	58	75	53			2082-			44	. 0.0
	25.4			20	517	365	- F	T	20 82 -		$\top$	303	0.0
O50	0.25	0	TYP	68	53	30	Ŧ.		40 30-		1 1	42	0.0
	6.35			20	434	207	F	7	4060	-		290	0.0
Q60	2	O	TYP	68	56	25_			4755		<del>- - -</del>	40	3.0
	51			20	386	172	-	Ŧ	4755		- I	276	0.0
Flat P	oducts												Fit
HO1	0.04	0	TYP	68	70	58	F		1775	- 88	FF	43	0.0
	1	1	I	20	483	400	Ŧ-	-	1775	5B -	ŦŦ	296	0,0

*Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1650 F	899 C
Melting Point - Solidus	1630 F	888 C
Density	0.304 lb/in ³ at 68 F	8.41 gm/cm ³ @ 20 C
Specific Gravity		8.41
Electrical Resistivity	39.9 ohms-cmil/ft @ 68 F	6.63 microhm-cm @ 20 C
Electrical Conductivity		0.152 MegaSiemens/cm @ 20 C
Thermal Conductivity	67.0 Btu - ft/(hr - ft2-°F)at 68F	
Coefficient of Thermal Expansion	11.8 ·10 ⁻⁶ per °F (68-572 F)	21.2 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity		377.1 J/kg • °K at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

**Tempers Most Commonly Used** 

Flat Products	
BAR, DRAWN	H01, H02, O50, O60
BAR, ROLLED	H01, O50, O60
PLATE	H02, M20, O60
STRIP, ROLLED	H01, O50

Other					
ROD	H01,	H02,	M30,	O50,	O60
SHAPES	H01,	M30			
TUBE	H58,	H80			

### Typical Uses Builders Hardware

Lock Pins

**Electrical** 

Precision Shipboard Equipment

**Fasteners** 

Rivets, Bolts, Nuts

Industrial

Welding Rod. Condenser Plates, Structural Uses, Valve Stems, Balls, Heat Exchanger Tube, Aircraft Turn buckle Barrels, Bearings. Dies, Golf Ball Production, Pressure Vessels, Bearings, Bushings, Hub Cones

Propeller Shafts, Marine Hardware, Decorative Fittings, Shafting, Propeller Shafts, Turn buckles Ordnance

Missile Components
Other
Baffle Plates and Flanges
Plumbing
Fittings

Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association</u>, LTD.

Copper Connects LifeTM



## Copper,on

### **Search Results**

C51000 (Phosphor Bronze, 5% A)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu	Fe	Pb	Ρ	Sn	Zn
Min./Max.	Rem.	.10	.05	.0335	4.2-5.8	.30
Nominal	94.8		,	.20	5.0	•

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification
Bar	AMS 4625
<u>                                     </u>	ASTM B139, B103
Bearings and Bushings	MILITARY MIL-B-13501
Bolts	ASTM F468
Bushing Stock	MILITARY MIL-B-13501
Nuts	ASTM F467
Plate	AMS 4510
	ASTM B103
Plate, Bridge and Bearing	ASTM B100
Rod	AMS 4625
	ASTM B139
	SAE J461, J463
Screws	ASTM F468
Shapes .	ASTM B139
Sheet	AMS 4510
	ASTM B103
	SAE J463, J461
Sheet, Bridge and Bearing	ASTM B100
Strip	AMS 4510
	ASTM B103, B888
	SAE J461, J463
Studs	ASTM F468
Tube	AMS 4625
	MILITARY MIL-T-3595
	· <del></del>

Wire	AMS 4720
	ASTM B159
	SAE J461, J463
Wire, Metallizing	MILITARY MIL-W-6712

### **Common Fabrication Processes**

Blanking, Drawing. Forming and Bending, Heading and Upsetting, Roll Threading and Knurting, Shearing, Stamping

**Fabrication Properties** 

Joining Technique	Sultability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Good
Coated Metal Arc Welding	Fair
Spot Weld	Good
Seam Weld	Fair
Butt Weld	Excellent
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Poor
Machinability Rating	20

Mechanical Properties	measured at re	nom femnerature	68 F (20 C)

1010011	utilied	, , ,,	יטעי	HCS	fillens	mien ar	COUNT	emper.	41	u	16	٠, ١	יסט	I \	-				
Temper	Section Size	Cold Work	Typ/ Min	_	Tensile Strength	Strength	Strongth (0.2%	Yleld Strength (0.05% offset)	ΕI	Ro Hi	eci Rro	kw Ing	eli ISS	Vickens Hard.	Bri Ha			Fatigue Strength	trod Impact Strengti
	in.	<b>%</b>		F	ksi	ksi	KSI	ksi	%	B	c	۲	30T	500	500	3000	ksi	ksi	fi⊣b
	mm.			c	МРв	MPa	мРа	MPa	Γ	Γ	Γ	Π			Ī		MPa	MPa	J
Flat Pro										-					_	•			
M20	0.0	0	ТҮР	68	50			Ļ.	E	E	ŀ	Ŀ	-		ŀ	ŀ	_		0.0
	0.0	L		20	345	-	<b> </b> -	ŀ	F	F	F	F	-	ļ.	F	F		-	0.0
OS015	0.04	0	TYP	68	53	22			50	94	F	76	F	-	F				0.0
	1			20	365	152		-	50	34	ŀ	<b>?</b> 9			F	F			0.0
Wire									٠	_	_	_			_	•			
H08	6,08	84	TYP	68	140			-	2	ŀ	ŀ	Ŀ.	-	-	-	F	-		0.0
	2			20	965				<u>.</u>	F	F	Г	F	-	Ŀ	<u> </u>			0.0
H01	0.08	b	TYP	38	68	60			24	F	t	F	F	-	┌		-	_	0.0
	2			20	469	414	-		24	Γ	ŀ	Γ			ŗ	ŀ	-	-	0.0
Flat Pro	ducte									_	_	_	_		•				
HROU	0.0	C	TYP	88	103	-	93		6		F		ŀ.		Ε.	L	-	-	0.0
	0.0		ļ	20	710	-	641	-	9		ŀ		-	-	,	F	-		0.0
061	0.0	ō	SMIN	68	<b>4</b> 5		13	_	17	Ŀ	Ē	L	ŀ,		L		-		0.0
	0.0			20	315	-	90	-	47	-	F				,	·			0.0
OS035	0.04	0	TΥP	68	49	20		-	58	28	Ħ	75			_	•	-		9.0
	1			20	338	138	-		58	28	ŀ	75		-		-	_		0.0
H06	0.04	Q .	TYP	58	98	_	92	,	Ы	93	H	H	75		F	F		-	0.0
	1			20	<b>6</b> 62		634		5	93	Γ	_	78		Γ	ŀ		_	0.0
HOT	Ω.0	0	SMIN	68	49		20		24		H	H			L	H		-	0.0
	0.0			20	340		140		24	L	Ħ	Π				t			0.0
H04	0.04	0	ŤΥΡ	68	84		80			87	H	H	75		-	H		25	00
	1				579		552		-	87	н	1	75		Ļ	[.			0.0
HR06	0.0	0	TYP		96		86		11	H	Н	Н	Ĥ		<u> </u>	$\vdash$			Q.Q
	0.0				082		593		=	H	H	Н				ᡛᢇᡰ			0.0
	0.0		TΥP		66		54		23	Н	Н	Н	├─	. ,	┢	┞┈			0.0
	0.0		-	20	455		372		28	H	Н	H	H		H	$\vdash$			0.0
		لــــا	L				27.4						Г		ш		[]		ν,υ

0.0 0.0 0.5	0	ТҮР	20 68	710	<b>-</b>	683		$\overline{}$									_	
0.0 -	0	ΓΥP	GB	72.		P003		3	ÐS	ŀŀ	7:	9	-	ŀ	ŀ	ŀ	152	0.0
•				84		74		14	П	Ħ	ŧ		-		F	1	<b>†</b>	0.0
	•		20	579	<u> </u>	510		14	F	Τ.	F			Į.	Į.	Ţ	Ţ.	0.0
D. <b>S</b>										~	_	_	•	-		-	-	—
	20	ТҮР	38	75	65	F		25	80	FŦ	F		-	ŀ	F	F	F	0.0
12,7			20	517	448	Ţ - Ţ		25	80		Ŧ		L	F	F	F	1	0.0
1	20	TYP	68	70	58			25	78	Ħ	Ŧ		<b>.</b>	F	<b>!</b>	1	1	0.0
25.4			20	483	400	- I		25	78	Ţ.	Ŧ			F	F		1	0,0
								_	_					•	•	•	<u> </u>	
0.08	0	קץד	68	110	]	1		Э	E	F	Έ		Ш	E	Ŧ	F	27	0.0
Ω			20	758	<u> </u>	-  -  -  -  -  -  -  -  -  -  -  -  -		3	F	ŀŀ	F		-	F	1	1	186	0.0
0.08	D	ТҮР	68	50	20	1		58		Į.	Ī		-	F	F	1	+	0.0
2			20	345	138	ļ ,		58	Г	Ι.	Ţ			F	1	1	1	0.0
ducts			•							ш		_		_		-		
0.04	n	TYP	68	47	19	ŀ		64	26	þ	'3-		-	ŀ	ŀ	F	ŀ	0.0
1			20	324	131	-		2.4	26	- 7	<b>'3</b> -		_	F	F	-	Ţ	0.0
					-			•	_	_				-		•	•	
0.0B	75	TYP	88	130	ŀ	_		3	E	Ē	ŀ		-	F	<u>F.</u>	ŀ	30	0.0
2	1		20	896	1	- F		13	F	П	Ŧ		-	-	F	ļ.	207	0.0
80.0	О	ΤΥP	58	85	80	Ţ		В	F	Ħ	Ŧ	╗		⇇	F	1	ļ —	0.0
2			20	586	5 <b>62</b>	T- T-		8		- }-	Ţ	_		F	ŀ		1	0.0
ducta	-			-	<del></del> -				ш	ч	т	_		_	•			
0.0	9	TYP	68	50	<u> </u>	F F		<b>T</b>	4C	ŀ	ŀ		-	F	F	F	F	0.0
C.O			20	345	}			F	4C	F	F			ŀ	F	1	F	0.0
0.0	1}	TYP	68	68		54		24	78	Ħ	69	9		F	┞	1	╁	0.0
0.0			20	455	1-	372		24	78	Ţ	69	9		-	Ŀ		Ţ	0.0
0.04	0	TYP	68	50	21	<del>                                     </del>				_		ᅥ		t	┢	ļ. —	+	0.0
1	T		20		145			_	_	-	_			T		t	Ţ.	0.0
0,04	10	TYP			+	103		_	_	_	4	$\exists$	<del></del>	⊢	<del>L</del>	<del></del>	t	0.0
1	Ť	Ť	_	+	<u>-t                                    </u>	$\rightarrow$		_	_	_	-	_		╁╌	一	<del> </del>	<del></del>	0.0
	1 26.4 0.08 2 2 2 0.08 2 4 0.04 1 1 0.08 2 2 0.08 2 2 0.08 2 1 0.08 1	1 20 26.4  0.08 0 2 0.08 0 2 thucts 0.04 0 1  0.08 75 2 0.08 0 2 ducts 0.0 0 0.0 0 0.0 0	1 20 TYP 26.4 0 TYP 26.4 0 TYP 2 0.08 0 TYP 2 1 1 0.08 75 TYP 2 0.08 0 TYP 2 0.08 0 TYP 2 0.08 0 TYP 2 0.08 0 TYP 2 0.00 0 TYP 6.6 0 TYP 0.0 0 TYP 0.0 0 TYP	1 20 TYP 88 26.4 20 0.08 0 TYP 86 2 20 0.08 0 TYP 88 2 20 0.08 0 TYP 88 1 20 0.04 0 TYP 88 1 20 0.08 0 TYP 88 2 20 0.08 0 TYP 88 2 20 0.08 0 TYP 68 2 20 0.08 0 TYP 68 0.0 0 TYP 68 0.0 0 TYP 68 0.0 0 TYP 68 0.0 0 TYP 68	1 20 TYP 58 70 26.4 20 TYP 58 70 26.4 20 463  0.08 0 TYP 58 110 2 20 758 0.08 0 TYP 58 50 2 20 345 ducts 0.04 0 TYP 68 47 1 20 324  0.08 75 TYP 88 130 2 20 896 0.08 0 TYP 68 85 2 20 586 ducts 0.0 0 TYP 58 50 6.0 20 345 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 58 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50 0.0 0 TYP 58 50	1 20 TYP 58 70 58 26.4 20 483 400  0.08 0 TYP 68 110 - 2 20 758 - 0.08 0 TYP 88 50 20  2 20 345 138  ducts 0.04 0 TYP 68 47 19 1 20 324 131  0.08 75 TYP 88 130 . 2 2 896 - 0.08 0 TYP 58 85 80 2 2 20 586 562  ducts 0.0 0 TYP 58 50 - 6.0 20 345 - 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 50 - 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 . 0.0 0 TYP 58 68 .	1 20 TYP 68 70 58 - 26.4 20 483 400 - 20 483 400 - 20 483 400 - 20 6.5 2 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 - 20 758 758 758 758 758 758 758 758 758 758	1 20 TYP 88 70 58	1 20 TYP 68 70 58 25 26.4 20 483 400 - 25 26.4 20 483 400 - 25 27 28 20 758 - 3 29 20 758 - 3 20 345 138 - 58 20 20 345 138 - 58 21 20 345 138 - 58 21 20 324 131 - 44 20 324 131 - 3 20 324 131 - 3 21 20 896 - 3 22 20 896 - 3 23 20 896 - 3 24 20 896 - 3 25 20 896 - 3 26 20 896 - 3 27 20 896 - 3 28 20 896 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80 - 3 38 35 80	1 20 TYP 88 70 58 - 2578 26.4 20 483 400 - 2578  0.08 0 TYP 88 110 3 - 3 - 2578  0.08 0 TYP 88 50 26 - 58 - 20 345 138 - 58 - 58 - 58 - 58 - 58 - 58 - 58 -	1 20 TYP 88 70 58 2578 26.4 20 483 400 - 2578 26.4 20 483 400 - 2578 2578 2578 2578 2578 2578 2578 2578	1 20 TYP 58 70 58	1 20 TYP 88 70 58 - 2578 2578 254.4	1 20 TYP 88 70 58	1 20 TYP 88 70 88	1 20 TYP 88 70 58	1 20 TYP 88 70 58	1 20 TYP 88 70 58

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1920 F	1049 C
Melting Point - Solidus	1750 F	954 C
Density	0.32 lb/in ³ at 68 F	8.86 gm/cm ³ @ 20 C
Specific Gravity	8.86	8.86
Electrical Resistivity	69.1 ohms-cmil/ft @ 68 F	11.49 microhm-cm @ 20 C
Electrical Conductivity*	15 %IACS @ 68 F	0.088 MegaSiemens/cm @ 20 (
Thermal Conductivity	40.0 Btu - ft/(hr - ft2-oF)at 68F	69.2 W/m ⋅ °K at 20 C
Coefficient of Thermal Expansior	9.9 ·10 ⁻⁶ per °F (68-572 F)	17.8 · 10 ⁻⁶ per ^o C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg - °K at 293 K
Modulas of Elasticity in Tension	16000 ksi	110000 MPa
Modulus of Rigidity	6000 ksi	41370 MPa

^{*}Determined on an alloy containing 5% tin and .2% phosphorus. This value will vary with the composition.

Tempers Most Commonly Used

Flat Products						
STRIP, ROLLED		H04,	H06,	H08,	H10,	O60
WIRE, ROLLED	H08					

Other	
ROD	H02
SHAPES	SM30
TUBE	H80
WIRE	H00, H01, H02, H04, H06, H08

### Typical Uses

#### Architecture

**Bridge Bearing Plates** 

#### Electrical

Switch Parts, Electromechanical Spring Components, Resistance Wire, Electrical Flexing Contact Blades, Electrical Connectors. Electronic Connectors, Wire Brushes, Electronic and Precision Instrument Parts, Fuse Clips

#### **Fasteners**

Lock Washers, Fasteners, Cotter Pins

#### Industrial

Bellows, Textile Machinery. Perforated Sheets, Chemical Hardware, Truss Wire, Springs, Sleeve Bushings, Diaphragms, Clutch Disks, Bourdon Tubes, Beater Bar, Welding Rods, Pressure Responsive Elements

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association</u>, LTD.

Copper Connects LifeTM

### Copper Development Association

### Copperac

### Search Results

C63400 (Aluminum Bronze)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾					Ni ⁽²⁾		Sn	
Min./Max.	Rem.	2.6-3.2	.09	.15	.05	.15	.25-,45	.20	.50
Nominal	96.7	2.9	_	-	-		.35	-	

- Cu value includes Ag.
- (2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications No information available.

Common Fabrication Processes

No information available.

Fabrication Properties No information available.

Mechanical Properties (measured at room temperature, 68 F (20 C) No information available.

Physical Properties No information available.

Tempers Most Commonly Used No information available.

Typical Uses
Electrical
Pole Line Hardware
Fasteners
Fasteners

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due

printed 06/01/2011 11:04AM by Luttie.Boarman p. 163/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 2

to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association, LTD.</u>
Copper Connects Life^{TV}



### Copperan

大型 可用原理 排送性 神体 表演話學地區 等 自体症 电多 在处理 折除管

### **Search Results**

C63600

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Си ⁽¹⁾ А				₽b	Ni ⁽²⁾	Si	Sn	Zπ
Min./Max.	Rem.	3.0-4.0	.15	.15	.05	.15	.7-1.3	.20	.50
Nominal	95.5	3.5	-	•	- 1	-	1.0	ļ	-

(1) Cu value includes Ag.

(2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications No information available.

### **Common Fabrication Processes**

Cold heading

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Not Recommended
Brazing	Not Recommended
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Fair
Spot Weld	Fair
Seam Weld	Fair
Butt Weld	Fair
Capacity for Being Cold Worker	Excellent
Capacity for Being Hot Formed	Fair
Machinability Rating	40

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tenzile Strength		Strength (0.2%	Yleld Strongth (0.06% offset)	Εì	Ra Ha	ele rdr	well 1086	Vickens Hard.	Brli Har	nell d.	Shear Strongth	Fatigue Strength	izod Impact Strength
	n,	%		F	kosi	ķsi	ksi	ksi .	*	В	С	301	500	500	3000	ksi	ksi	ft⊣b
	mm.		Г	c	MPa	MPa	MPa	MPa	Г	Г	Π					MPa	MPa	į.
Rod										_		_	•					

061	0.0	b	TYP	68_	50	<u> </u>	ŀ	. F	64	- 1	<b>.</b>	ŀ	ŀ	ı	L	ŀ	Į.	ŀ	0.0
	0.0	1		20	414	Ţ-		Ţ	84	П	Ţ	Ī	T			Γ	1	Ŧ	0.0
Wire												•	_						
Hô1	0,488	21	TYP	68	84	-		. T-	29	34	FF	F	Ή.		ļ.	ŀ.,		E	0.0
	12.4		T	20	570	-	Ţ.	Ţ	29	84	Ŧ	F	1		-	F		T	0.0
Rod												•				_	_		
H01	0.0	C	TYP	38	74	_}-	F	F	91	- 1	ĿF	F	ŀ.		·	F	F	_ E	 0.0
	0.0			20	510	Ţ	1	_ I _	31	-	FF	F	F		Γ	F	-	_	0.0
Wire										_		_				_			
НО	0.422	7	TYP	68	68	ŀ	_ F	_ł	52	71	ŀ	F	F		-	ŀ	F	Ŀ	 0.0
	10.7	Π.		20	459		-	T	52	7 :	Ŧ	Γ	L			L	T	T	0.0
C61	0.392	Q	TYP	68_	60				67		Ē	F				F	1	<u> </u>	0,0
	10			20	414	-	-	F	67	- 1		F	F				Ţ	F	0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1890 F	1032 C
Density	0.301 lb/in ³ at 68 F	8.33 gm/cm ³ @ 20 C
Specific Gravity	8.33	8.33
Electrical Resistivity	86.4 ohms-cmil/ft @ 68 F	14.36 microhm-cm @ 20 C
Electrical Conductivity	12 %IACS @ 68 F	0.07 MegaSiemens/cm @ 20 C
Thermal Conductivity	33.0 Btu · ft/(hr · ft2·°F)at 68	3F57.1 W/m · °K at 20 C
Coefficient of Thermal Expar	ision 9.4 ·10 ⁻⁶ per °F (68-572 F)	16.9 ·10 ⁻⁶ per °C (20-300 C)
Modulas of Elasticity in Tens	ion 16000 ksi	110000 MPa

### Tempers Most Commonly Used

Other	
ROD	H01, O60
WIRE	H00, H01, O60

### **Typical Uses**

Electrical

Cold Headed Nuts, Cable Connectors, Components for Pole Line Hardware

**Fasteners** 

Screw Machine Products, Bolts

industrial

Valve Components, Nuclear Power Service

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Unk to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association</u>, LTD.

Copper Connects Life™



### Copperons

### Search Results

C64200 (Aluminum Bronze)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Al	As	Fe	Рb	Mn	Ni ⁽²⁾	Si	Sn	Zn
Min./Max.	Rem.	6.3-7.6	.09	.30	.05	10	.25	1.5-2.2	.20	.50
Nominal	91.2	7.0	1	_			-	1.8	,	_

- (1) Cu value includes Ag.
- (2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification
Bar	AMS 4631 ASME SB150 ASTM B150
Bar, Forging	ASTM B124
Bolts	ASTM F468
Forgings, Die	AMS 4631 ASME SB283 ASTM B283
Nuts	ASTM F467
Rod	AMS 4631 ASME SB150 ASTM B150 SAE J463, J461
Rod, Forging	ASTM B124
Screws	ASTM F468
Shapes	ASTM B150
Shapes, Forging	ASTM B124
Studs	ASTM F468

Common Fabrication Processes Forging, Hot Forming, Machining

Fabrication Properties

Joining Technique	Suitability
Soldering	Not Recommended
Brazing	Fair
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Fair
Spot Weld	Fair
Seam Weld	Fair
Butt Weld	Fair
Capacity for Being Cold Worked	Poor
Capacity for Being Hot Formed	Excellent
Forgeability Rating	80
Machinability Rating	60

321

379

58

400

38 262

241

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength	Yield Strength (0.5% ext. under load)	Strength (0.2%	Yield Strength (0.05% offset)	EJ	Ro Ha				Vickens Hard.	Brii Har		Shear Strongth	ratigue	izod Impact Strengti
	វា.	75		F	ksi	ksi	icsi	ksi	Х	В	c	FBI	0T	500	500	3000	ksi	cai	n-t⊳
	mm.			c _	MPa	MPa	MPa	MPa	Г	Г	П	Т		_			MPa	λiPa	j.
Rod									_	_		_					•		
M30	0.75	D .	TYP	88	75	35			32	77	F	- [-		-	Γ.		F	E	0.0
	19			20	517	241		-	32	77	F	-		-		F	ļ-	-	0,0
H04	1.5	10	TYP	68	93	60		- ·	28	90	Ħ	+			ļ				0.0
	38			20	641	414	-	-	20	90	Г	-		-	-	F	-	-	0.0
H04	0.75	15	ΓYΡ	68	102	88			22	94	E	Ħ		_		F	59	50	0.0
	18			20	703	469	-		22	94	F	FF				F	407	345	0.0

**Physical Properties** 

12.7

Forgings M10 2

	US Customary	Metric
Melting Point - Liquidus	1840 F	1004 C
Melting Point - Solidus	1800 F	982 C
Density	0.278 lb/in ³ at 68 F	7.7 gm/cm ³ @ 20 C
Specific Gravity	7.69	7.69
Electrical Resistivity	113.0 ohms-cmil/ft @ 68 F	18.79 microhm-cm @ 20 C
Electrical Conductivity	8 %IACS @ 68 F	0.047 MegaSiemens/cm @ 20 C
Thermal Conductivity	26.0 Btu - ft/(hr - ft2.ºF)at 68F	45.0 W/m - °K at 20 C
Coefficient of Thermal Expansion	10.0 -10 ⁻⁶ per °F (68-572 F)	18.0 · 10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension	16000 ksi	110000 MPa

0,0

0.0

۵.۵

0.0

0.0

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

printed 06/01/2011 11:04AM by Luttie.Boarman p. 171/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Modulus of Rigidity

6000 ksi

41370 MPa

Tempers Most Commonly Used

Flat Products

BAR, DRAWN H04, H58, M30, O50

Other ROD

H04, M30, O50

SHAPESM30

Typical Uses

Automotive

Valve Guides, Automobile Engine

Electrical

Pole Line Hardware

**Fasteners** 

Bolts, Nuts

Industrial

Valve Components, Valve Bodies, Gears, Valve Stems, Cams

Marine

Hardware

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association</u>, LTD.

Copper Connects Life™

### 🔾 Copper Development Association



THE STRUME COOKS THE HETSELFING OF THEFT AND TO PERSON WITH

### Search Results

C64900

Last Updated: Jul 06, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	ΑI	Fe	Pb	Ni ⁽²⁾	Si	Sn	Żn
Min./Max.	Rem.	.10	10	.05	10	8-1.2	1.2-1.6	.20
Nominal		·	,	ı	ŧ	1.0	1.4	1

Cu value includes Ag.

(2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications No information available.

Common Fabrication Processes

No information available.

Fabrication Properties No information available.

Mechanical Properties (measured at room temperature, 68 F (20 C) No information available.

Physical Properties No information available.

Tempers Most Commonly Used No information available.

Typical Uses No information available.

Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer

Link to Us Membership

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD.

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

7/9/2008



### Search Results

C65100 (Low-Silicon Bronze B)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	Рb	Mn	Si	Zn
Min./Max.	Rem.	8.	.05	7	.8-2.0	1.5
Nominal	98.5	-	-	-	1.5	- "

(1) Cu value includes Ag.

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

TPDIIOGDIO	
Product	Specification
Bar	ASME SB98
	ASTM B98
Bolts	ASTM F468
Nuts	ASTM F467
Pipe	ASTM B315
Plate	ASTM B96
Plate, Clad	ASTM B432
Rod	ASME SB98
	ASTM B98
Screws	ASTM F468
Shapes	ASME SB98
	ASTM B98
Sheet	ASTM B96
Strip	ASTM B96
Studs	ASTM F468
Tube	ASTM B315
Wire	ASTM B99, B105

### **Common Fabrication Processes**

Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Roll Threading and Knurling, Squeezing and Swaging

	Fabrication	Properties	
--	-------------	------------	--

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Fair
Spot Weld	Excellent
Seam Weld	Good
Butt Weld	Excellent
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Machinability Rating	30

Mechanical Pro	perties (	measured	at room	tempera	ture, i	68 F (	20 C	)

Temper			Typ/ Min	Temp		Strength	Yleid Strength (0.2%	Yieid	_	Ro	cky		Vickens	Г	nell d.	Shear Strength	Fatigue Strength	izod Impact Strengti
	in,	74,		F	ksi	ksi	),si	ksi	Х	В	C F	301	500	500	3000	ksi	ksi	H4b
	ດາກເຄ			i O	MPa	MPa	MPo	MPa	П		П					MPa	MРа	Į.
Rod											_		•					
D5035	1	0	TYP	58	40	15		-	50		· la	\$	F	ŀ	ŀ	E	-	0.0
	25.4			20	276	103	-	-	50	- 1	- 65	<del>-</del> -	ļ —	F	F	<u> </u> -		0.0
Alim			•				<u> </u>		_			_						
106	0.08	0	TYP	68	105	71	<u>.                                    </u>		10	E	ΕĒ	F		E.	F	53	28	0.0
	2			20	724	490	-		10	-		F	-	F	-	365	193	0.0
Tube																		
	0.0	35	TYP	68	65	40	1	-	20	75	ΕĿ	67		E	ŀ	-		0.0
	0.0			20	448	276	<u> </u>	-	20	75	ŀŀ	67	-	ŀ	-	-	-	0.0
Rod									_		_			•				
H06	1	50	٤	68	90	67	-		12	90	ΞĒ	<u>E.,</u>	ŀ.	Ł	Ŀ	50	-	0.0_
	25,4	L		20	621	462	ŀ	-	12	90	ŀŀ	ŀ	-	ŀ	ŀ	345	ŀ	0.0
Nire																		•
HD4	0.44	60	Ϋ́Р	68	95		·		12		EE	Ŀ	-	Ł	<u> </u>	<u> </u>	-	0,0
	11	L. I	·	20	855	·	}	-	12	H	ŀŀ	ŀ	-	ŀ	ŀ	-	L-	0.0
H01	0.08	0	TYP	68	65	50			25	-	EE	Ŧ	}	-	-	40		0.0
	þ			20	448	345	-		25		FF	F	-	Ι.	1	276		0.0
H00	0.08	o	TYP	68	65	40		-	40	П	Ħ	F	<b> </b>	F	-	36		0.0
	2			20	379	276			40	-	FF	F	-			248	-	0.0
Rod									_	_		-				h		
HD4	1	36	ΤΥΡ	88	70	55	-		15	80	ΕĒ	F		ŀ	Į	45	-	<b>0</b> .0
	25.4			20	483	379	<b>.</b>	F	15	80	F	F	-	F	F	310	}	0.0
Wire																		
H <b>0</b> 2	0.44	37	TYP	68	80		F	-	20	į.	F E	Ŀ		<b>.</b>			-	0.0
	11			20	552													



## Copperate

**医抗毒素 医多种性 电电阻 机油油 机电阻 电电阻 医乳腺素 医性动脉** 

### **Search Results**

C65500 (High-Silicon Bronze A)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	Рb	Mn	Ni ⁽²⁾	Si	Zn
Min/Max.	Rem.	8	.05	.50-1.3	.6	2.8-3.8	1.5
Nominal	97.0	ı		.9		3.0	_

(1) Cu value includes Ag.

(2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification
Bar	SAE J463, J461
Bar, Forging	ASTM B124
Bar, Rolled	ASME SB98 ASTM B96, B98 SAE J461, J463
Bar, Rolled, Pressure Vessels	ASME SB96 ASTM B96
Bolts	ASTM F468
Forgings, Die	ASTM B283
Nuts	ASTM F467
Pipe	ASME SB315 ASTM B315
Plate	ASME SB96 ASTM B96
Plate, Bridge and Bearing	ASTM B100
Plate, Clad	ASTM B432
Plate, Pressure Vessels	ASME S896 ASTM 896
Rod	ASME SB98 ASTM B98 SAE J461, J463
Rod, Forging	ASTM B124

Screws	ASTM F468
Shapes	ASME SB98 ASTM B98 SAE J461, J463
Shapes, Forging	ASTM B124
Sheet	ASME SB96 ASTM B96 SAE J461, J463
Sheet, Bridge and Bearing	ASTM B100
Sheet, Pressure Vessels	ASME SB96 ASTM B96
Strip	ASME SB96 ASTM B96 SAE J461, J463
Studs	ASTM F468
Tube	ASME SB315 ASTM B315 MILITARY MIL-T-8231
Wire	ASTM B105, B99

### **Common Fabrication Processes**

Blanking, Drawing, Forming and Bending, Heading and Upsetting, Hot Forging and Pressing, Roll Threading and Knurling. Shearing, Squeezing and Swaging

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Good
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Fair
Spot Weld	Excellent
Seam Weld	Excellent
Butt Weld	Excellent
Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Forgeability Rating	40
Machinability Rating	30

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	?emp	Tensile Strength	Strength	Strength (0.2%	Yield Strength (0.05% offsøt)	ΕI	Ro Ha		veli 1935		Vickens Hard.	Brid Har		Shear Strongth	raugue Strennih*	izod Impact Strength
	и.	%	Г	F	ksi	ksi	ksi	ksi	*	8	d	þ	τÇ	500	500	3000	ksi	ksi	ti-lb
	mm.			Ç	MPa	MPa	мРа	MPa	Г		П	T	1				MPa	MPa	J
Flat Pro	ducts																		
O\$015	0,04	0	TΥΡ	86	63	30			55	86	-  9	0		_	ŀ	-	45		0.0
	1			20	434	207	1	-	55	56	- 6	0		_	-	ŀ	310		<b>9.0</b>
102	0.04	c	TYP	68	78	45			17	37	F	75	5	-		F	50	-	0.0
	1			20	538	310		_	17	87	H	75	5		-	-	345	-	0.0
Rod													_				<u> </u>		
H06	1	50	TYP	68	108	60	_		13	95	F	Ŀ		اشيح	L	F	<b>32</b>	F	0.0
	25.4			20	745	414		-	13	95	ŀŀ	F			-	-	427	-	<b>3.0</b>

Wire																_		
101	0.08	0	ΓÝΡ	68	80	48			20	F	ì		}	_	F	52	F	0,0
	þ			20	552	331	<u></u>		20	F			}	-	F -	359	F -	0.0
00	0.08	Ö	TYP	68	70	40	· _	,	35	F			F		Ŀ	48	1	0.0
	2	T		20	483	276	-	-	35	F				F	ļ	337	T	0,0
lat Pr	oducts									_				_		-	•	
S035	Q.04	0	TYP	<b>38</b>	50	25	ŀ	ŀ	606	<b>2</b> -	85		ŀ	ŀ	ŀ.	43	F	0.0
	1			20	414	172	<b>—</b>	Ŀ	606	4	85				ļ.	2 <del>96</del>	T.	0.0
106	0.04	0	ТҮР	68	104	60	+	╁	6 9	-		80	_	F	ţ	60	+	0.0
	h		T	20	717	414				s I		30				414		0.0
ube		_	٠		_				1. 1.	يت	Ш	-	<b>'</b>	_	_	r.,,	٠	
ieo	0.065	35	TYP	38	93	Ţ	T.	-	229	э.	П	76	<u>.                                      </u>	L	L.	F	Ţ	0,0
	1.7	Ŧ	T	20	641	1.			229:	_		a	t	t	t		1 -	0.0
íat Pr	oducts		٠					-	<u> </u>	l			<u> </u>	<u> </u>	Ц	<u> </u>	<u> </u>	P.**
104	0.04	ю	TYP	88	<del>9</del> 4	58	F	-	8 9:	34.		78		Γ	ļ.	57	<b>-</b>	0.0
	1	1	_	20	648	400	1	$\top$	8 9:	-	_	78		E	t	393	<del>1</del>	0.0
108	0.04	0	TYP		110	62	<del>-</del> -	-	4 9	_		81	<del>                                     </del>	$\vdash$	$\vdash$	63	<del></del>	0.0
100	1,07	Ť	_	20	758	427	<del>- [ -</del>	╅	$\rightarrow$	-		_	<del></del>	H	-	•	+	_
	<u> </u>	٠	1	20	126	427			4 9	Щ	_	<b>91</b>		<u> </u>	<u> </u>	434	<u> </u>	0.0
Rod 05050	k	0	TYP	E o	58	22		_	lankı	J	_			_	τ –	Teo	-	la a
X3V3V		ř	1		_	_	+	┿-	608	-	Н	Ï	<b></b>	┝	┡	43	+	0.0
	25.4	4	_	20	400	152	<u> </u>	┸—	50B(	_	Ц		<u> </u>	Ŀ,	<u> </u>	296	<u> </u>	0.0
104	<u> </u>	36	TYP	_	92	55		+	2290	靯	L		<u> </u>	Ŀ	<u> </u>	58	<b>ᅷ</b>	0,0
	25.4			20	634	379	+		2230	Ł	-				<u>t                                    </u>	400	<u> </u>	0.0
Vire	1	-				-				_	_							
108	0.0B	0	ΤÝΡ	_	145	70	<del>-</del>	<del>-</del>	3 }	Ł	니	_		Ŀ	<u> </u>	70	30	0.0
	2	4		20	1000	483		<u> </u>	3 -	Ł	L	-		Ŀ.	<u> </u>	483	207	0.0
	oducts			,						_	_							
)S070	0.04	0	TYP	į	56	21	<u> </u>	_	6340	Ł	7 <i>6</i>	-		<u> </u>	Ŀ	42		0.0
	1			20	386	_ 145 _	<u> </u>		8344	Ŋ-]	76	-	-	ŀ	ŀ	290	F	0.0
łod																		
102	1	20	ĨΫ́Р	_	78	45			3589	E	Ц		,		Ŀ	52	-	0.0
	25.4	1		20	538	310	+	ŀ	35/8	5-	⊦	-	ŀ	-	┞	359	ŀ	0.0
Vire																		
)S035	80.0	þ	TYP	68	60	25		<u> </u>	<b>30</b> -	Ŀ			+		Γ	43	-	0.0
	2	L	<u>L</u> .	20	414	172	_ }	} <u> </u>	60	-	ŀ	- ]	-	┡	┡	296	1	0.0
104	0.08	D	ТҮР	6R	125	65	Ŀ	Ŀ	5-	Ħ		-	-	E	E	65	29	0.0
	2			20	862	448	T	-	5 -	П	П	-		F	ļ.	448	200	0.0
ube		-	•								_					·		
S050	0.065	0	TYP	68	57	_ F	Ŧ	Ŧ	7045	F	П		- 1	į.	F	F	Į.	0.0
	1.7			20	393	T-	1		7049	-	.				I		1	0.0
Yire									ثلت ا		ш			<u> </u>		<u> </u>	—	
102	80.0	0	τγp	68	98	57	F	1	8 -	ŢĪ	П				Ţ.	58	T	0.0
	2	1	-	20	676	393	1	1	f.t	Ħ	H			t	t	400	<del></del>	0.0
ist D-	oducts			С.			<u> </u>		<u> </u>	Ц	[				<u> </u>	700	<u> </u>	۳.۷
101	0.04	0	TYP	S.A	68	35	τ –	ı	3079		7	67				47		0.0
	1	Ť	_	8	469	241	┰	<del></del>	3079		-	9 <i>1</i> 67			ੁ	324	<del>f                                    </del>	0.0
				e u	<b>11</b> 6754	#/#T												

^{*}Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 10⁶.

### **Physical Properties**

	US Customary	Metric
Melting Point - Liquidus	1880 F	1027 C
Melting Point - Solidus	1780 F	971 C
Density	0.308 lb/in ³ at 68 F	8.53 gm/cm ³ @ 20 C
Specific Gravity	8.53	8.53
Electrical Resistivity	148.0 ohms-cmil/ft @ 68 F	24.6 microhm-cm @ 20 C
Electrical Conductivity	7 %IACS @ 68 F	0.041 MegaSiemens/cm @ 20 C
Thermal Conductivity	21.0 Btu · ft/(hr · ft2·ºF)at 68	F36.3 W/m · °K at 20 C

printed 06/01/2011 11:04AM by Luttie.Boarman p. 181/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4

Coefficient of Thermal Expansion	10.0 ·10 ⁻⁶ per °F (68-572 F)	18.0 · 10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Stu/lb/ºF at 68 F	377.1 J/kg · °K at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

**Tempers Most Commonly Used** 

Flat Products	
PLATE	M20
SHEET	M20
STRIP, ROLLED	H01, H02, H04, H06, H08, OS015, OS035, OS070
WIRE, ROLLED	H02, H06

Other	· · · · · · · · · · · · · · · · · · ·	
	H02, H04, H06, OS050	
TUBE	H58, H80, OS050	
WIRE	H00, H01, H02, H04, H08, OS0	15, OS035

### Typical Uses

Consumer

Sculpture

Electrical

Pole Line Hardware, Motors, Rotor Bar

**Fasteners** 

Screws, Rivets, Burrs, Nuts, Nails, Cotter Pins, Clamps, Bolts, Hinges

Industrial

Screen Cloth, Wear Plates, Screen Plates, Shafting, Wire. Welded Pressure Vessels, Oil Refinery Plumbing Tube, Bearing Plates, Butts, Bushings, Cable, Channels, Chemical Equipment, Heat Exchanger Tubes, Kettles, Hydraulic Pressure Lines, Tanks, Piston Rings, Doctor Blades, Paper Industry, Pressure Vessels, Welded Tanks

Marine

Hardware, Propeller Shafts

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the International Copper Association, LTD.

Copper Connects Life™

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 2



### Copperme

THE DEPOSIT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

### **Search Results**

C65600

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	ΑĬ	Fe	Рb	Mn	Si	Sn	Zn
Min/Max.	Rem.	.01	.50	.02	1.5	2.8-4.0	1.5	1.5
Nominal	96.6		-		-	3.4	-	-

(1) Cu value insludes Ag.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications

Product	Specification
Electrode, Welding	AWS A5.6
Rod, Welding	AWS A5.27, A5.7

### Common Fabrication Processes

Welding

Fabrication Properties No information available.

Mechanical Properties (measured at room temperature, 68 F (20 C) No information available.

Physical Properties No information available.

Tempers Most Commonly Used No information available.

Typical Uses Industrial Welding Rod, Filler Metal

Start Another Search

**DISCLAIMER:** 

printed 06/01/2011 11:04AM by Luttie.Boarman p. 184/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 2

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association, LTD.</u>
Copper Connects Ufe^{TA}



### Copperen

printed 06/01/2011 11:04AM by Luttie:Boarman p. 186/361

### **Search Results**

C67300

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	ΑI	Fe	Pb	Mn	Ni ⁽²⁾	Si	Sn	Zn
Min./Max.	58.0-63.0	.25	.50	40-3.0	2.0-3.5	.25	.50-1.5	.30	Rem.
Nominal	60.5	1		1.7	2.7	-	1.0	,	34.1

- (1) Cu value includes Ag.
- (2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification
Bar	SAE J461, J463
Forgings	SAE J461, J463
Rod	SAE J463, J461
Shapes	SAE J463, J461

#### **Common Fabrication Processes**

Hot Forming, Hot Pressing, Machining

**Fabrication Properties** 

Joining Technique Suitability
Machinability Rating 70

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Sire	Cold Work	Typ/ Min	Тегър	Tensite Strength		Strength (0.2%	Yleid Strength (0.05% offset)	Ef	Ro Ha	eck rd	well ness	Vickens Hard.	Har Bris	neli d.	Shear Strangth	Landae	izod impact Strength
	in	%		뜨	ksi	ksi	kæi	kal	%	В	þ	301	500	500	3000	ksi :	ksi .	n-ip
	mm,			С	MPa	MРa	MPa	MРа	Г		П	Т				MPa	MPa	ļ
Bar											_						-	
H50	<1.00	0	min	88	65	40			: 1	80	F	Ŀ	-		F	- 1	-	0.0
	<25 4			20	448	276		-	11	ŝŪ	IJ	1		Ł.	F		<u> </u>	0.0

^{*}Fatigue Strength: 100 x 10 6cycles,

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 2

unless indicated as [N]X 106.

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	1605 F	874 C
Density	0.3 lb/in ³ at 68 F	8.3 gm/cm ³ @ 20 C
Specific Gravity	8.3	8.3
Electrical Conductivity	22 %IACS @ 68 F	0.13 MegaSiemens/cm @ 20 C
Thermal Conductivity	55.0 Btu - ft/(hr - ft2-9F)at 68F	
Coefficient of Thermal Expan	sion 11.0 ·10 ⁻⁶ per ^o F (68-572 F)	19.0 ·10 ⁻⁶ per °C (20-300 C)
Modulas of Elasticity in Tensi	on 17000 ksi	117200 MPa

#### **Tempers Most Commonly Used**

Other	
BAR	H50
<b>FORGS</b>	T
ROD	H50

### Typical Uses

**Fasteners** 

Fasteners, Lead Screw Nuts

Industrial

Clutch Bearings, Shaft Bushings, Propeller Shafts, Sleeve Bearings, Thrust Bearings, Pump Parts, Seal Rings, Spindles, Idler Pins, Drive Shafts, Piston Heads, Bearings, Bushings, Bearings, Pins, Wear Plates, Gears and Cams

Marine

Hardware, Valve Seats

Other

Connecting Rods

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association, LTD.</u>
Copper Connects LifeTM



### Copperan

()连查10元;从10多4分单位的第三位,20多元时间,10分元

### Search Results

C67500 (Manganese Bronze A)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	ΑI	Fe	Pb	Mn	Sn	Żn
Min./Max.	<b>57.0-60.</b> 0	.25	.8-2.0	.20	.0550	.50-1.5	Rem.
Nominal	58.5	-	1.4	,	.10	1.0	39.0

(1) Cu value includes Ag.

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification
Ваг	ASTM B138 SAE J461, J463
Bar, Forging	ASTM B124
Bolts	ASTM F468
Forgings, Die	ASTM B283 SAE J463, J461
Nuts	ASTM F467
Rod	ASTM B138 SAE J463, J461
Rod, Forging	ASTM B124
Screws	ASTM F468
Shapes	ASTM B138 SAE J461, J463
Shapes, Forging	ASTM B124
Studs	ASTM F468

#### **Common Fabrication Processes**

Hot Forging and Pressing, Hot heading and upsetting

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent

Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Fair
Coated Metal Arc Welding	Not Recommended
Spot Weld	Good
Seam Weld	Fair
Butt Weld	Good
Capacity for Being Cold Worked	Poor
Capacity for Being Hot Formed	Excellent
Forgeability Rating	80
Machinability Rating	30

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	<b>}</b>	Cold Work	Typ/ Min	Temp	Tensile Strength	Strength	Strength (0.2%	Yieid Strength (0.05% offset)	Ei	Ro His	oc li ard	well ness	Vickens Hard.	Brit Har	reil d.	Shear Strength	Ctennusp,	Izod Impact Strengti
		%		F	ksi	ksi	ksi	ksi	χ,	9	c	F301	500	500	3000	ksi	ksi	R√b
	mm.			С	MPa	MPa	MPa	MPa		Π	П					MPe	MPa	ı,
Rod																		
HQ1	2	10	TYP	68 	72	42	_		27	77	E	·ŀ	F	·		44	·	0.0
	51			20	496	290		-	27	77	Fl		F -	ŀ		303	-	0,0
O60	1	0	TYP	68	65	30			33	В:	Ŀ	L	-	Ŀ		42	-	0.0
	25.4			20	44B	207	-		33	65	F		-	ŀ	-	290	-	0.0
H02	t	20	TYP	68	<del>84</del>	60		-	19	ЭÇ	Ē		-		,	48		0.0
	25.4			20	579	414	-	-	19	þс	П		J. —	F	L	331	-	0.0
H01	1	10	ΓYΡ	GB	77	45			23	83	Ł		Ē		F	47		0.0
	25.4			20	531	310			23	a	П	.  -	-			324		0.0

^{*}Fatigue Strength: 100 x 10  6 cycles, unless indicated as [N]X 10 6 .

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1630 F	888 C
Melting Point - Solidus	1590 F	866 C
Density	0.302 lb/in ³ at 68 F	8.36 gm/cm³ @ 20 C
Specific Gravity	8.36	8.36
Electrical Resistivity	43.2 ohms-cmil/ft @ 68 F	7.18 microhm-cm @ 20 C
Electrical Conductivity	24 %IACS @ 68 F	0.14 MegaSiemens/cm @ 20 C
Thermal Conductivity	61.0 Btu · ft/(hr · ft2·°F)at 68F	105.6 W/m - ºK at 20 C
Coefficient of Thermal Expansion	11.8 ·10 ⁻⁶ per °F (68-572 F)	21.2 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg ⋅ ºK at 293 K
Modulas of Elasticity in Tension	15000 ksi	103400 MPa
Modulus of Rigidity	5600 ksi	38610 MPa

### **Tempers Most Commonly Used**

Other				
ROD	H01,	H02,	M30,	O60
SHAPES	M30			

Typical Uses Automotive

Clutch Disks, Shafting, Pump Rods

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

F	a	s	t	e	n	6	rē	
---	---	---	---	---	---	---	----	--

Bolts

Industrial

Valve Bodies, Balls, Valve Stems, Bushings, Aircraft Parts

Marine

Hardware

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD. Copper Connects Life $^{\text{TM}}$ 

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 2



### Copperm

### Search Results

C69400 (Silicon Red Brass)

Last Updated: Apr 28, 2008

### **Chemical Composition**

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	Pb	Si	Zn
Min./Max.	80.0 <b>-8</b> 3.0	20	.30	3.5-4.5	Rem.
Nominal	81.5	,	•	4.0	14.5

(1) Cu value includes Ag.

Note: Cu + Sum of Named Elements, 99.5% min.

#### **Applicable Specifications**

Product	Specification
Rod	ASTM B371

### **Common Fabrication Processes**

Forging, Screw Machining

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
	Good
	Good
Butt Weld	Good
Capacity for Being Cold Worked	
Capacity for Being Hot Formed	Excellent
Forgeability Rating	80
Machinability Rating	30

Mechanical Properties (measured at room temperature, 68 F (20 C)

Temper	Section Size	Cold Work	Typ/ Min	Temp	Tonallo	Strength	Strength (0.2%	Yield Strength (0,05% offset)	ΕI	R (	e k	well ness	Vickens Herd.	Bri Ha	nell rd.	Shoar Strangth	Fatigue Strength*	izod Impact Strength
	in.	ě		ĮL,	ksi	ksi	ksi .	ksi	*	B	c	301	500	501	3000	ksi	ksi	fi-lb
	mm.			C	MPa	MPa	мРа	MPa			$\prod$					MPa	MPa	j

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 2

Rod									
O60	2	О	TYP	68	80	40		26 95-	- 0.0
	51			20	552	278	_	25 95	D.0
H00	0.76	0	TYP	68	100	67		21 95	- 0.0
	19			20	889	393	1	2195	- 0,0
060	0.5	6	TYP	68	90	45		2085	0.0
	12.7			20	621	310	,	20 85	0.0
080	1	0	TYP	68	85	43	-	25 85	0.0
	25 4	T		20	586	296	1	25 85	- 0.0

*Fatigue Strength: 100 x 10 6cycles, unless indicated as [N]X 10⁶.

Physical Properties

	US Customary	Metric
Melting Point - Liquidus	1685 F	918 C
Melting Point - Solidus	1510 F	821 C
Density	0.296 lb/in ³ at 68 F	8.19 gm/cm ³ @ 20 C
Specific Gravity	8.19	8.19
Electrical Resistivity	167.0 ohms-cmil/ft @ 68 F	27.76 microhm-cm @ 20 C
Electrical Conductivity	6 %IACS @ 68 F	0.036 MegaSiemens/cm @ 20 C
Thermal Conductivity	15.0 Btu · ft/(hr · ft2.0F)at 68F	26.0 W/m · ºK at 20 C
Coefficient of Thermal Expansio	п 11.2 · 10 ⁻⁵ per °F (68-572 F)	20.2 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	16000 ksi	110000 MPa

**Tempers Most Commonly Used** 

Other RODH00, 060

**Typical Uses** Industrial Valve Stems

Start Another Search

### **DISCLAIMER:**

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD.

Copper Connects Life^{IM}

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys Search

### Copper Development Association



**科技 除注射程度 海绵联系 起生 经数据的过程 医外部的 新加斯斯特 南地 医外部的 经连续** 

### **Search Results**

C69430

Last Updated: Jul 06, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	As	Fe	Pb		Zn
Min./Max.	80.0-83.0	0306	.20	.30	3.5-4. <u>5</u>	Rem.
Nominal	81.5	.04	ļ		4.0	14.5_

(1) Cu value includes Ag.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications

Product	Specification
Rod	ASTM B371

Common Fabrication Processes

Forging, Screw Machining

**Fabrication Properties** 

I aprication 1 15 person	
	Suitability
Soldering	Excellent_
	Excellent_
	Good
	Good
	Good
Butt Weld	Good
Capacity for Being Cold Worked	Good
Capacity for Being Hot Formed	80
Forgeability Rating	80
Machinability Rating	30

us shanical Deposition (measured at room temperature.	68	F (	20	C)	

	Section Size		•			Strength	Strength (0,2%	Vield Strength (0.05% offset)	Ēί	Rc Ha	oci erc	k• In	rell ess	Vickens Hard.	Brit Har	nell d.		Estigne	tzod Impact Strengti
	n.	₩		F	ksi	ksi	ksi	ksi	*	8	F	F	301	500	500	3000	ksi	kai	r:Ab
	mai.			c	MPa	МРа	MPa	MPa				Γ					мРа	MPa	J
Rod		•						_	_	Ţ	_	_	_		_	_			0.0
O60	2	þ	TYP	85	80	40	<u> </u>	<u> </u>	2:	8:	Ł	Ł	<u> </u>	<u> </u>	ŧ~	<del> </del>	<del> </del>		_
	50.6			20	552	276	F	-	þ	ŧ:	1	ŀ	ŀ	ł	<u> </u>	<u> </u>	<u> </u>		0.0
OBO	0.50	0	TYP	68	90	45			20	18	ł	ŀ	<u> </u>	F	Ł	· _	F	<u> </u>	0.0
_	12.7	1	1	20		310	F	Į.	20	¥E:	Ŧ	F	F	F	F	ŀ	ŀ	<b>}</b>	0.0

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys Search

		1		1		1	1	ı	1	1	1 1	ı	1	١	ı			1	- 1	 
Ļ		<u> </u>	<del> </del>	<u> </u>		-	<del>    -   -   -   -   -   -   -   -   -  </del>		<del></del>	bs	ē: 1	+	┢	┢	_			F		0.0
ľ	D60	1	<u>p</u>	TYP		35	43	—	1	25	Ę	1	T	T				F	-	0.0
N		25.4	1_		20	585	298	┵	+	21	딞	+	┨	╁╌	-1	_	-	┖	t	0.0
A	H04	0.75	<u> </u>	ТҮР	_	100	- 5/ 	╼	<del>-[</del>	<u> </u>	H	t	t	t				Γ	Ŧ	0.0
' 1		19.1	1	ı	20	689	393	t		<u>۴'</u>	<b>L.</b> 1	Ĺ		<u>1</u> _	پر	<u> </u>				

*Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 106.

Physical Properties

Physical Properties	US Customary	Metric
Melting Point - Liquidus	1685 F	918 C
Melting Point - Solidus	1510 F	819 C
Density	0.26 lb/in ³ at 68 F	8.19 gm/cm ³ @ 20 C
Specific Gravity	8.19	8.19
Electrical Resistivity	167.0 ohms-cmil/ft @ 68 F	27.76 microhm-cm @ 20 C
Electrical Conductivity	6 %IACS @ 68 F	0.036 MegaSiemens/cm @ 20 C
Thermal Conductivity	15.0 Blu · ft/(hr · ft2.ºF)at 68	F26.0 W/m · ºK at 20 C
Coefficient of Thermal Expansion	n 11.2 ·10 ⁻⁶ per °F (68-572 F)	20.2 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · ^o K at 293 K
Modulas of Elasticity in Tension		110000 MPa

Tempers Most Commonly Used No information available.

Typical Uses Industrial Valve Stems

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the International Copper Association, LTD.
Copper Connects LifeTM

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 2



### Copper.ms

到你就是**这种的。这是我们就是一个人的,我们就是是这个人的,我们就是是我们的** 

### Search Results

C69700

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	Рb	Mn	Sí	Zn
Min/Max.	75.0-80.0	20	.50-1.5	.40	2.5-3.5	Rem.
Nominal	77.5	-	1.0	1	3.0	18.5

(1) Cu value includes Ag.

Note: Cu + Sum of Named Elements, 99.5% min.

#### **Applicable Specifications**

Product	Specification
Rod	ASTM B371

Common Fabrication Processes

Machining

**Fabrication Properties** 

	Technique	
Machina	bility Rating	70

Mechanical Properties (measured at room temperature, 68 F (20 C) No information available.

Physical Properties No information available.

Tempers Most Commonly Used No information available.

Typical Uses Industrial Valve Stems

Start Another Search

printed 06/01/2011 11:04AM by Luttie.Boarman p: 200/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 2

### **DISCLAIMER:**

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Sitemap

Copyright @ 2008 Copper Development Association Inc. All Rights Reserved. Affiliated with the <u>International Copper Association, LTD</u>.

Copper Connects Life™

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 3



### Copperam

**DOTATION OF THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAX** 

### Search Results

C70600 (Copper-Nickel, 10%)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	₽b	Mn	Ni ⁽²⁾	Ζn
Min./Max.	Rem.	1.0-1.8	.05	1.0	9.0-11.0	1.0
Nominal	88.6	1.4	-	1.	10.0	F

(1) Cu value includes Ag.

(2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications

Product	Specification
Bar	ASTM B151, B122 MILITARY MIL-C-15726
Pipe, Seamless	ASME SB466 ASTM B466
Pipe, Welded	ASME \$B467 ASTM B608, B467
Plate	ASTM B122 MILITARY MIL-C-15726
Plate, Clad	ASTM B432
Plate, Condenser Tube	ASME SB171 ASTM B171 SAE J463, J461
Rod	ASTM B151 MILITARY MIL-C-15726
Rod, Welding	AWS A5.15
Sheet	ASTM B122 MILITARY MIL-C-15726 SAE J463, J461
Strip	ASTM B122 MILITARY MIL-C-15726
Tube, Condenser	ASME SB111 ASTM B552, B111 MILITARY MIL-T-15005

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 3

	SAE J463, J461
Tube, Finned	ASME SB359 ASTM B359 MILITARY MIL-T-22214
Tube, Seamless	ASME SB466 ASTM B466, B469 MILITARY MIL-T-16420
Tube, U-Bend	ASME SB395 ASTM B395
Tube, Welded	ASME SB543 ASTM B543 MILITARY MIL-T-16420
Wire	MILITARY MIL-C-15726

### **Common Fabrication Processes**

Forming and Bending, Welding

**Fabrication Properties** 

	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Fair
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Good
	Good
Seam Weld	Good
Butt Weld	Excellent
Capacity for Being Cold Worked	Good
Capacity for Being Hot Formed	Good
Machinability Rating	20

Mechanical Properties (measured at room temperature, 68 F (20 C)

						3 W 1 D D U I						·, ·		1-0					
Temper	Section Size	Cold Work	Typ/ Min	Temp	Tensile Strength	Strength	Strength (0.2%	Yleld Strength (0.05% offaet)	ΕI	π. X	ogk ard	nes wel		Vickens Hard.	Bri:	nell d.	Shear Strength	Fatigue Strength*	izod Impact Strengti
	ln.	70		F	ksi	ksi	ksi	ksi	*	β	C	F	301	500	500	3000	ksi	ksi	it-lib
	mm.	Γ		C	мРа	MPa	MPa	MPa	Γ	ľ	П				Γ		MPa	MPa	h
Tube	•							•						-					
OS025	O C	0	TYP	88	44	16			42	15	E	55	26		ŀ	F .			0.0
	0,0			20	303	110	•	•	42	15	F	35	28	-	F	F	-	-	0.0
H55	0.0	þ	TYP	68	60	57			10	72	Г	100	70	F	F	F		-	0.0
•	0.0			20	414	393		-	10	72	F	100	70	ŀ	F	F	-		6.0

^{*}Fatigue Strength:  $100 \times 10^{6}$  cycles, unless indicated as [N]X  $10^{6}$ .

**Physical Properties** 

	US Customary	Metric
Melting Point - Liquidus	2100 F	1149 C
Melting Point - Solidus	2010 F	1099 C
Density	0.323 lb/in ³ at 68 F	8.94 gm/cm ³ @ 20 C
Specific Gravity	8.94	8.94

### Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 3

Electrical Resistivity	115,0 ohms-cmil/ft @ 68 F	19.12 microhm-cm @ 20 C
Electrical Conductivity	9 %IACS @ 68 F	0.053 MegaSiemens/cm @ 20 C
Thermal Conductivity	26.0 Btu · ft/(hr · ft2·°F)at 68F	45.0 W/m ⋅ ºK at 20 C
Coefficient of Thermal Expansion	9.5 ·10 ⁻⁶ per °F (68-572 F)	17.1 ·10 ⁻⁶ per °C (20-300 C)
Specific Heat Capacity	0.09 Btu/lb/°F at 68 F	377.1 J/kg · ºK at 293 K
Modulas of Elasticity in Tension	18000 ksi	124000 MPa
Modulus of Rigidity	6800 ksi	46880 MPa

**Tempers Most Commonly Used** 

TOTAL POLOTINO	or opnimonity good
Flat Product	S
PLATE	M20
SHEET	H01, H02, H04, O60
STRIP, ROLI	LED H01, H02, H04, O60, OS025

Other	
PIPE	H55, H80, O60
TUBE	H55, OS015, OS025

### **Typical Uses**

**Automotive** 

Power Steering Tube, Brake Lines

Consumer

Screw Lamp Bases

Industrial

Condenser Plates, Condensers, Weld Torch Tips, Heat Exchanger Tubes, Valve Bodies, Evaporator Tubes, Pressure Vessels, Distiller Tubes, Pump Impellers for Oil Refining, Ferrules, Evaporators

Marine

Boat Hulls, Tube Sheet for Salt Water Service, Salt Water Pipe Fittings, Salt Water Piping Systems, Salt Water Piling Wrap, Hot Water Tanks, Salt Water Baffles, Propeller Sleeves, Ship Hulls, Water Hoses

Flanges

Start Another Search

#### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Unk to Us Membership Sitemap

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the <u>International Copper Association, LTD.</u>

Copper Connects Life™

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 1 of 4



## Copper

到 美和的自动地位 時期 美国国际主任 雲 以为州 城市 机砂煤 配过差

### **Search Results**

C71500 (Copper-Nickel, 30%)

Last Updated: Apr 28, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	Ρb	Mn	Ni ⁽²⁾	Ζn
Min./Max.	Rem.	.40-1.0	.05	1.0	29.0-33.0	1.0
Nominal	69.5	.50	-	-	30.0	-

(1) Cu value includes Ag.

(2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

**Applicable Specifications** 

Product	Specification
Bar	ASTM B122, B151 MILITARY MIL-C-15726 SAE J461, J463
Bolts	ASTM F468
Electrode, Welding	AWS A5.6 MILITARY MIL-E-22200/4
Nuts	ASTM F467
Pipe, Seamless	ASME SB466 ASTM B466
Pipe, Welded	ASTM B608, B467
Plate	ASTM B122 MILITARY MIL-C-15726 SAE J461, J463
Plate, Clad	ASTM B432
Plate, Condenser Tube	ASME SB171 ASTM B171 SAE J463, J461
Rod	ASTM B151 MILITARY MIL-C-15726
Screws	ASTM F468
Sheet	ASTM B122 MILITARY MIL-C-15726 SAE J463, J461

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 2 of 4

Strip	ASTM B122 MILITARY MIL-C-15726 SAE J461, J463
Studs	ASTM F468
Tube, Condenser	ASME SB111 ASTM B552, B111 MILITARY MIL-T-15005 SAE J463, J461
Tube, Finned	ASME SB359 ASTM B359 MILITARY MIL-T-22214
Tube, Seamless	ASME SB466 ASTM B466 MILITARY MIL-T-16420
Tube, U-Bend	ASME SB395 ASTM B395
Tube, Welded	ASME SB543 ASTM B543
Wire	MILITARY MIL-C-15726

### **Common Fabrication Processes**

Forming and Bending, Welding

**Fabrication Properties** 

Joining Technique	Suitability
Soldering	Excellent
Brazing	Excellent
Oxyacetylene Welding	Good
Gas Shielded Arc Welding	Excellent
Coated Metal Arc Welding	Excellent
Spot Weld	Excellent
Seam Weld	Excellent
Butt Weld	Excellent
Capacity for Being Cold Worked	Good
Capacity for Being Hot Formed	Good
Machinability Rating	20

Mechanical Properties (measured at room temperature, 68 F (20 C)

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 3 of 4

Témper	Section Size	Cold Work	Typ/ Win	Temp	Tensila Strength	3 <del>be</del> nyth	8បទngth (0.2%	Yield Strength (0.05% offset)	E	Ro Ha				Vickens Hard.	Srli Har	nell d.	Shear Strength	Strength'	-	
	in.	×.	¥.		F	_	ksi	ksi	ksi	γ,	В	þ	ŀ	307	500	500	3000	ksi	ksi	ti-ti
<del></del>	mm.		┢	c	MPa	MPa	MPa	MPa				1					МРа	MPa	j	
Rod									_	_	_	_	_		_		_		h o	
H02	1	20	TYP	68	75	70			15	80	밚	4	•	<u> </u>	<u> </u>	<del> </del>	<u> </u>	<del></del>	0.0	
	25.4			20	517	483	<b>r</b>		15	8C	ŀŀ	. }	•	<u>                                     </u>	<u>t                                    </u>	<u>t</u>	<u>t                                     </u>	<u>t</u>	0.0	
Tube									_	_		_			_	τ —	_		0.0	
()\$035	0,0	٥_	TYP	88	54	·	<u> </u>	<u> </u>	4:	36	Ц			<u> </u>	Ļ.	-	_	_	_	
	0.0		Γ	20	372	F	<u> </u>	ŀ	45	36	L	7	•		<u> </u>	<u> </u>	<u> </u>	<u> </u>	0.0	
OS025	0.0	Ь	TYP	68	60	25	F	F	4	45	Ð	90		<u> </u>	Ł.	Ŀ	<u> </u>	<u> </u>	0.0	
	0.0		Π	20	414	172	F	F	4	45	Ł	80	_		Ŀ	<u> </u>	<u> </u>	<u> </u>	0.0	
Flat Pri	oducts														_				lo o	
M20	1	b	TYP	38	55	20	- <u>_</u>	<u> </u>	1:	35	Ц	_	_	<u> </u>	Ł	上	<u> </u>	<del> </del>	0.0	
	25.4	Π	Т	20	<b>3</b> 79	138	F	ŀ	ŀ	3:	Ł	- '	٠	<u> </u>	<u>Ł</u> _	<u> </u>	<u> </u>	<u> </u>	0.0	

*Fatigue Strength: 100 x 10 ⁶cycles, unless indicated as [N]X 106.

Dhysical Properties

Physical Properties								
	US Customary	Metric						
Melting Point - Liquidus	2260 F	1238 C						
Melting Point - Solidus	2140 F	1171 C						
Density	0.323 lb/in ³ at 68 F	8.94 gm/cm ³ @ 20 C						
Specific Gravity	8.94	8.94						
Electrical Resistivity		37.4 microhm-cm @ 20 C						
Electrical Conductivity	4 %IACS @ 68 F	0.027 MegaSiemens/cm @ 20 C						
Thermal Conductivity	17.0 Btu · ft/(hr · ft2·°F)at 68F	29.4 W/m · °K at 20 C						
Coefficient of Thermal Expansion		16.2 ·10 ⁻⁶ per °C (20-300 C)						
Specific Heat Capacity	0.09 Btu/lb/ºF at 68 F	377.1 J/kg · °K at 293 K						
Modulas of Elasticity in Tension		152000 MPa						
Modulus of Rigidity	8300 ksi	57230 MPa						

Tempers Most Commonly Used

Flat Products	
PLATE	M20
SHEET	H01, H02, O60
STRIP, ROLLED	H01, H02, H04, O60, OS025

Other							
PIPE H55, I	180, O60						
ROD H02							
TUBE OS01	5, OS025, OS035						

### **Typical Uses**

Pump Impellers, Heat Exchanger Tubes, Evaporator Tubes, Distiller Tubes, Condenser Plates, Refrigerators, Process Equipment, Condenser Components, Ferrules, Welding Backing Rings, Flexible Metal Hose, Weld Wire, Boiler Parts, Condensers, Propeller Sleeves, Heat Exchanger Components

Salt Water Flanges, Salt Water Piping, Valve Bodies, Sea Water Service, Fittings, Sea Water Condensers, Salt Water Pipe Fittings, Water Boxes - Salt Water Applications, Pump Bodies and Internal Parts-Sea Water

http://www.copper.org/resources/properties/db/CDAPropertiesResultServlet.jsp?action=search

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys ... Page 4 of 4

### Start Another Search

DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

Disclaimer Link to Us Membership Siteman

Copyright © 2008 Copper Development Association Inc. All Rights Reserved.

Affiliated with the International Copper Association, LTD.

Copper Connects Life™

printed 06/01/2011 11:04AM by Luttie.Boarman p. 211/361

Copper.org: Resources: Standards & Properties - Properties of Wrought and Cast Copper Alloys Search

Page 1 of 1

Copper Development Association



THE VICENCE OF ACCOUNT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

### Search Results

C76000

Last Updated: Jul 06, 2008

**Chemical Composition** 

(%max., unless shown as range or min.)

	Cu ⁽¹⁾	Fe	Pb	Mn	Ni ⁽²⁾	Zn
Min./Max.	60.0-63.0	.25	10	50	7.0 <b>-9</b> .0	Rem.
Nominal	61.5	,			8.0	

(1) Cu value includes Ag.

(2) Ni value includes Co.

Note: Cu + Sum of Named Elements, 99.5% min.

Applicable Specifications No information available.

### **Common Fabrication Processes**

No information available.

Fabrication Properties No information available.

Mechanical Properties (measured at room temperature, 68 F (20 C) No information available.

Physical Properties No information available.

Tempers Most Commonly Used No information available.

Typical Uses Builders Hardware Hardware

Start Another Search

### DISCLAIMER:

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in compositions and to manufacturing limitations, they should not be used for specification purposes. See applicable ASTM International specification references.

# EXHIBIT 9

printed 06/01/2011 11:04AM by Luttie.Boar<del>man p. 213</del>/361

FINANCIAL

JAN-29-1996 ØB: Ø1 FROM OLIN ACCOUNTING INDPLS

### **BRASS - INDIANAPOLIS**

INVOICE NO.: 10768 CUSTOMER NO.: \$1545 BOL NO.: 528

BOL NO. : 528 CONTRACT NO.: 4929.011

INVOICE DATE : (01/16/96

SHIPPED DATE : 01/16/96

PACKING LIST: 2959

96A0525

SOLD TO:

CHEMBICO

3200 S. ST. LOUIS ST. CHICAGO, IL 60613

SHIP TO:

**ALLOY** DESCRIPTION

GROSS

NET

PRICE AMOUNT

8726

AJAX PIT CLEANIN

39,944 32,862 0.4500\$ 14,787.90

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 14,787.90

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

COMMENTS:

FEB-01-1996 12:56 FROM OLIN ACCOUNTING INDPLS

### **BRASS - INDIANAPOLIS**

printed 06/01/2011 11:04AM by Luttie.Boarman p. 214/361

INVOICE NO.: 10798 CUSTOMER NO.: \$1545 BOL NO.: 542

CONTRACT NO.: 5566.011

INVOICE DATE : 01/26/96 SHIPPED DATE : 01/26/96

PACKING LIST: 2981

96A 0548

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, ILL 60613

SHIP TO:

TO .

ALLOY DESCRIPTION

6000 FRNCE SCRNG

NET 33,580

GROSS

0.4200\$ 14,103.60

PRICE

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 14,103.60

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS P.O. BOX 92359

CHICAGO, IL 60675-2359

COMMENTS:

8722

## OLIN BRASS - INDIANAPOLIS

INDIANAPOLIS, INDIANA

printed 06/01/2011 11:04AM by Luttie.Boarman p. 215/361

INVOICE NO.: 10821 CUSTOMER NO.: \$1545 BOL NO. : 555 CONTRACT NO.: 5477.011 INVOICE DATE : 02/13/96 SHIPPED DATE : 02/13/96 PACKING LIST : 3003

•

96B0535

SOLD TO:

CHEMETCO

3200 8. ST. LOUIS ST. CHICAGO, IL 60613

SHIP TO:

ΤÖ

ALLOY

DESCRIPTION

GROSS

NET PRICE

AMOUNT

**B722** 

6000 FRNCE SCRNG

43,766

34,698

0.4200\$ 14,573.16

CREDITS/OTHER CHARGES:

\$ 0.00

TOTAL DUE:

\$ 14,573.16

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

COMMENTS:

APPROVED BY:_ U

TOTAL P.07

#### <u> ASS - INDIANAPOLIS</u>

INDIANAPOLIS, INDIANA

INVOICE NO.: 10827 CUSTOMER NO.: \$1545

: 564 BOL NO.

CONTRACT NO.: 5477.011

INVOICE DATE : 02/19/96) SHIPPED DATE: 02/19/96

PACKING LIST: 3013

9662527

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST.

CHICAGO, IL 60613

SHIP TO:

NET PRICE THUOMA ALLOY DESCRIPTION GROSS 0.5000\$ 15,759.00 8726 PIT CLEANINGS 41,086 31,518

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 15,759.00

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359

FINANCIAL

# **BRASS - INDIANAPOLIS**

INDIANAPOUS, INDIANA

printed 06/01/2011 11:04AM by Luttie.Boarman p. 217/361

INVOICE NO. : 10838 CUSTOMER NO. : 51545 BOL NO. : 567

CONTRACT NO.: 5477.011

INVOICE DATE : SHIPPED DATE : PACKING LIST :

02/21/96

3020

9660528

SOLD TO:

CHEMETCO

3200 E. ST. LOUIS ST.

CHICAGO, IL 60613

SHIP TO:

ALLOY DESCRIPTION GROSS PRICE NET

8726

PIT CLEANINGS

42,225

33,360

0.5000\$ 16,680.00

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

MOUNT

TOTAL DUE:

\$ 16,680.00

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359 CHICAGO, IL 60675-2359

FINANCIAL

P.15

#### **BRASS - INDIANAPOLIS**

INDIANAPOLIS, INDIANA

printed 06/01/2011 11:04AM by Luttie.Boarman p. 218/361

INVOICE NO. : 10839 CUSTOMER NO. S1545 BOL NO. 566

CONTRACT NO.: 5477.011

INVOICE DATE : 02/20/98 SHIPPED DATE : 02/20/96

PACKING LIST : 3014

96600505

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60613

SHIP TO:

PRICE AMOUNT DESCRIPTION GROSS . NET ALLOY 0.5000\$ 16,178.00 8726 32,356 PIT CLEANINGS 40,324

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 16,178.00

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359

COMMENTS:

APPROVED BY:_ W.L.

printed 06/01/2011 11:04AM by Luttie.Boarman p. 219/361

FINANCIAL

MAR-04-1996 14:11 FROM OLIN ACCOUNTING INDPLS TO

# <u> ASS - INDIANAPOLIS</u>

INVOICE NO. : (10844 CUSTOMER NO.: \$1545 BOL NO. : 570

CONTRACT NO .: VERBAL

INVOICE DATE : 02/22/96 SHIPPED DATE : 02/22/96 PACKING LIST : 3021

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60613

SHIP TO:

ALLOY

DESCRIPTION

GROSS_

net

PRICE

8726

SCRAP

31,918

0.4500\$ 14,363.10

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 14,363.10

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359 CHICAGO, IL 60675-2359

FINANCIAL

#### **BRASS - INDIANAPOLIS**

INDIANAPOLIS, INDIANA

printed 06/01/2011 11:04AM by Luttie.Boarman p. 220/361

INVOICE NO. : 10845 CUSTOMER NO.: 81545 BOL NO. : N/A CONTRACT NO.: VERBAL

INVOICE DATE : 02/23/96
SHIPPED DATE : 02/23/96
PACKING LIST : 3023

96/20542

CHEMETCO SOLD TO:

3200 S. ST. LOUIS ST. CHICAGO, IL 60613

SHIP TO:

ALLOY

DESCRIPTION

GROSS NET

PRICE AMOUNT

8726

SCRAP

33,018

0.4500\$ 14,858.10

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 14,858.10

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359

# **BRASS - INDIANAPOLIS**

printed 06/01/2011 11:04AM by Lutti-

INVOICE NO. : 10846-CUSTOMER NO. : -81545 : 574 BOL NO. CONTRACT NO.: VERBAL INVOICE DATE : 02/27/96 SHIPPED DATE : 02/27/96 SHIPPED DATE: 02/27 PACKING LIST: 3025

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60613

SHIP TO:

ALLOY DESCRIPTION GROSS PRICE AMOUNT NET

8726

SCRAP

27,608

0.4500\$ 12,423.60

9660543

CREDITE/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 12,423.60

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359 CHICAGO, IL 60675-2359

**COMMENTS:** 

TOTAL P.07

# <u> BRASS - INDIANAPOLIS</u>

printed 06/01/2011 11:04AM by Luttie.Boarman p. 222/361 .

INVOICE NO.: 10860 CUSTOMER NO.: \$1545 BOL NO. 580 CONTRACT NO.: VERBAL

INVOICE DATE : 03/05/96 SHIPPED DATE : 03/05/96 PACKING LIST : 3032

96 C05/3

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST.

CHICAGO, IL 60623

DESCRIPTION **YOTTY** 

GROSS

NET

SHIP TO:

PRICE

8722

6000 SERIES

34,092

. .

0.4500\$ 15,341.40

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 15,341.40

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359

printed 06/01/2011 11:04AM by Luttie.Boarman p. 223/361

P.04 FINANCIAL

APR-02-1996 11:01 FROM OLIN ACCOUNTING INDPLS

#### **BRASS - INDIANAPOLIS**

INVOICE NO. : 10876 CUSTOMER NO.: \$1545

BOL NO. : 613 CONTRACT NO.: 7917.010 INVOICE DATE : 03/26/96 SHIPPED DATE : 03/26/96 PACKING LIST : 3075

96 C0532

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60623

SHIP TO:

TO

**YTTOX** DESCRIPTION GROSS NET PRICE TKUOMA 8722 0.3700\$ 12,858.24 6000 FRNCE SCRNG 43,172 34,752

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 12,858.24

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

COMMENTS:

#### <u>IN BRASS - INDIANAPOLIS</u>

INVOICE NO. : 10889 CUSTOMER NO. : 51545 POT. NO. : 618

CONTRACT NO.: 7917.010

(03/29/95) INVOICE DATE : SHIPPED DATE : 03/29/96

PACKING LIST : 3083

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST.

CRICAGO, IL 60623

<u> Alloy</u> DESCRIPTION **GROSS** NET PRICE AMOUNT

8726

PIT CLEANINGS

33,002

SHIP TO:

0.3700\$ 12,210.74

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 12,210.74

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359 CHICAGO, IL 60675-2359

#### **BRASS - INDIANAPOLIS**

printed 06/01/2011 11:04AM by Luttie.Boarman.p.-<del>225</del>

INVOICE NO. : 10917 S1545 CUSTOMER NO.:

BOL NO. 523 CONTRACT NO.: 7917.010 INVOICE DATE : 04/02/96 SHIPPED DATE : 04/02/96

3093 PACKING LIST :

96 20519

SOLD TO:

CHEMETCO

3200 S. ST. LOUIS ST.

CHICAGO, IL 60623

ALLOY DESCRIPTION GROSS

NET

PRICE THUOMA

8726

PIT CLEANINGS

34,932

SHIP TO:

0.3600\$ 12,575.52

CREDITE/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 12,575.52

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359

CHICAGO, IL 60675-2359

## IN BRASS - INDIANAPOLIS

INDIANAPOLIS, INDIANA

INVOICE NO. : 10918 CUSTOMER NO.: \$1545

BOL NO. CONTRACT NO.: 631

7917.010

INVOICE DATE : 04/09/96 SHIPPED DATE : 04/09/96 PACKING LIST : 3101

96210520

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60623

NET PRICE **GROSS** 

TRUOMA

8726

ALLOY

PIT CLEANING

DESCRIPTION

34,836

SHIP TO:

0.3700\$ 12,889.32

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 12,889.32

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359 CHICAGO, IL 60675-2359

**COMMENTS:** 

# **BRASS - INDIANAPOLIS**

INDIANAPOLIS, INDIANA

INVOICE NO. : 10928 CUSTOMER NO.: S1545

BOL NO. : 640 CONTRACT NO.: 6230.021

INVOICE DATE : 04/19/96 SHIPPED DATE : 04/19/96 PACKING LIST : 3114

9620531

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CRICAGO, IL 60623

SHIP TO:

TO

PRICE AMOUNT YLLOX DESCRIPTION **GROSS** NET 3538 353 BILLET CUTS 12,674 0.5300 \$ 6,717.22

CREDITS/OTHER CHARGES:

\$ 0.00

TOTAL DUE:

\$ 6,717.22

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359

COMMENTS:

# **BRASS - INDIANAPOLIS**

INDIANAPOLIS, INDIANA

INVOICE NO. : 10929 CUSTOMER NO.: \$1545

BOL NO. 640 CONTRACT NO.: 6230.021 INVOICE DATE : 04/19/96 SHIPPED DATE : 04/19/96

PACKING LIST: 3114

9600532

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60623

SHIP TO:

ALLOY	DESCRIPTION	GROSS	NET	PRICE	AMOUNT
3600	3608 BILLET CUTS	•	6,256	0.5300	3,315.68

CREDITS/OTHER CHARGES:

\$ 0.00

TOTAL DUE:

\$ 3,315.68

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

COMMENTS:

## <u>IN BRASS - INDIANAPOLIS</u>

INDIANAPOLIS, INDIANA

INVOICE NO. : 10930 CUSTOMER NO.: 51545

BOL NO. : 64D CONTRACT NO.: 6230.010 INVOICE DATE : 04/19/96 SHIPPED DATE : 04/19/96 PACKING LIST : 3115

9600523

CHEMETCO SOLD TO:

3200 S. ST. LOUIS ST. CHICAGO, IL 60623

SHIP TO:

**GROSS** ALLOY DESCRIPTION

PRICE NET

AMOUNT

1458

145 BILLET CUTS

16,048

0.9500\$ 15,245.60

CREDITS/OTHER CHARGES:

\$ 0.00

TOTAL DUE:

\$ 15,245.60

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE RENIT TO: OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359 CHICAGO, IL 60675-2359

printed 06/01/2011 11:04AM by Luttie.Boarman p. 230/361-



INDIANAPOLIS, INDIANA

INVOICE NO.: 10931 CUSTOMER NO.: S1545

BOL NO. 646 CONTRACT NO.: 7917.010 INVOICE DATE : 04/22/96 SHIPPED DATE : 04/22/96 PACKING LIST : 3120

96 DO534

SOLD TO: CHEMETCO

3200 S. ST. LOUIS ST. CHICAGO, IL 60623

SHIP TO:

TO

ALLOY DESCRIPTION

GROSS_

NET PRICE AMOUNT

8722

6000 SERIES

20,494

0.3500 \$ 7,172.90

CREDITS/OTHER CHARGES:

PROVISIONAL BILLING

\$ 0.00

TOTAL DUE:

\$ 7,172.90

TERMS: NET 30 DAYS

FROM DATE OF SHIPMENT

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359

CHICAGO, IL 60675-2359

COMMENTS:



INVOICE #

960505 CUSTOMER# (\$1545)

BOL#

656

CONTRACT#

7917.010

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 60623

INVOICE DATE (

SHIPPED DATE

**PACKING LIST** 

03132

96E0503

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES	21,482	\$0.33000	\$7,089.06

TOTAL DUE:

\$7,089.06

**TERMS NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # (

960524 CUSTOMER# (\$1545

BOL#

689

CONTRACT#

7917.010

INVOICE DATE 5/31/96

SHIPPED DATE PACKING LIST

3168

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 80623

 ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
 8722	6000 SERIES	14,758	\$0.32000	\$4,722.56
8722	2000 SERIES	16,782	\$0.36000	<b>\$</b> 6,041.52

TOTAL DUE:

\$10,764.08

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO: **OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359



INVOICE#

CUSTOMER# BOL#

CONTRACT#

7917.010

INVOICE DATE

SHIPPED DATE

**PACKING LIST** 

5/31/98

3169

SOLD TO:

Chemetco

3200 S. St. Louis St.

Chicago, IL 60623

96E0505

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722 6	000 SERIES	22.232	\$0,36000	\$8,003.52

**TOTAL DUE:** 

\$8,003.52

**TERMS NET 30 DAYS** 

COMMENTS: PROVISIONAL BILLING

PLEASE REMIT TO: OLIN BRASS - INDIANAFOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359



INVOICE #

CUSTOMER# \$1545 BOL#

CONTRACT# 7917,010

SOLD TO:

Chemetoo

3200 S. St. Louis St.

Chicago, IL 60623

SHIPPED DATE 6/28/96

PACKING LIST

3211

96F 0520

 ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	7000 SERIES	8,422	\$0.30000	\$2,526.60
8722	6000 SERIES	23,318	\$0.30000	\$8,995.40

TOTAL DUE:

TERMS **NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



**INVOICE** #

960707

CUSTOMER#

S1545

BOL#

SOLD TO:

732

**CONTRACT#** 

7917.010

Chemetoo

3200 S. St. Louis St.

Chicago, IL 60623

INVOICE DATE

7/10/96

SHIPPED DATE

7/10/96

**PACKING LIST** 

3221

96 G 0506

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

**AMOUNT** 

8722

3000 SERIES

31,238

\$0.22000

\$6,872.36

**TOTAL DUE:** 

\$6,872.36

**TERMS** 

**NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

**PLEASE REMIT TO:** 

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

96N 0500



INVOICE # 960801

CUSTOMER # \$1545

BOL# 751

CONTRACT# 7917.010

SHIPPED DATE 8/19/96
PACKING LIST 3246

SOLID TO: CI

Chemetoo 3200 S. St. Louis St.

Chicago, IL 60623

ALLOY

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

8722

3000 SERIES

34,514

\$0.26000

\$8,973.64

TOTAL DUE:

\$8,973.64

TERMS N

**NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

APPROVED BY: 2597

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

96\$ 0508

# LIN BRASS-INDIANAPOLIS

INDIANAPOLIS, INDIANA

INVOICE # CUSTOMER #

754

BOL# CONTRACT# 7917.010 INVOICE DATE

SHIPPED DATE

8/20/96 8/20/96

PACKING LIST 3247

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 60623

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

8722

2000 SERIES

33,136

\$0.26000

\$8,615.36

TOTAL DUE:

\$8,615.36

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 980812 CUSTOMER#

BOL#

CONTRACTS 7917.010 INVOICE DATE( 8/30/96 SHIPPED DATE 8/30/96 PACKING LIST 3286

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boar<del>man p.</del>

Chemetco

3200 S. St. Louis St. Chicago, IL 60623

96 A 0510

**AMOUNT ALLOY NET LBS** PRICE DESCRIPTION 31,588 \$0.30000 \$9,476.40 8722 6000 SERIES

TOTAL DUE:

\$9,476.40

TERMS **NET 30 DAYS** 

COMMENTS: PROVISIONAL BILLING

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



# LIN BRASS - INDIANAPOLIS

#### INDIANAPOLIS, INDIANA

INVOICE # (CUSTOMER # (

30L# 77

INVOICE DATE (

PACKING LIST

8/30/96 8/30/96 3285

CONTRACT#

7917.010

SOLD TO:

Chemetoo

3200 S. St. Louis St. Chicago, IL 60623 96×10513

ALLOY

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

8722

6000 SERIES

33,936

\$0.30000

\$10,180.80

TOTAL DUE:

\$10,180.80

TERMS

**NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

ADDONUED DV:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INDIANAPOLIS, INDIANA

INVOICE # 960908 CUSTOMER # \$1545

BOL#

796

CONTRACT#

7917.010

SOLD TO: Chemetco

3200 S. St. Louis St. Chicago, IL 60623 INVOICE DATE 9/11/96 SHIPPED DATE 9/11/96 PACKING LIST 3313

96 I 0509

ALLOY	DESCRIPTION	1	NET LBS	PRICE	THUOMA
8722	2000 SERIES		33,264	\$0.26000	\$8,648.64

**TOTAL DUE:** 

\$8,648.64

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

**PLEASE REMIT TO:** 

OLIN-BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

CUSTOMER *

786

**CONTRACT#** 

7917.010

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 60623

INVOICE DATE

SHIPPED DATE

PACKING LIST

3300

96 T.05/0

ALLOY	DESCRIPTION	

**NET LBS** 

PRICE

AMOUNT

8722 2000 SERIES 34,432

\$0.26000

\$8,952.32

TOTAL DUE:

\$8,952.32

TERMS

**NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

**PLEASE REMIT TO:** 

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



invoice# (

CUSTOMER # \$1545

BOL#

801

960916

CONTRACT# 7917.010

SEP-26-1996 12:24 FROM

INVOICE DATE

OLIN ACCOUNTING INDPLS

9/18/98

SHIPPED DATE

9/18/96

PACKING LIST 3320

967 US16

SOLD TO:

Chemetoo

3200 S. St. Louis St. Chicago, IL 60623

ALLOY

DESCRIPTION

NET LBS

PRICE

AMOUNT

8722

2000 SERIES

35,220

\$0.26000

\$9,157.20

TOTAL DUE:

\$9,157.20

TERMS NET 30 DAYS

COMMENTS:

**PROVISIONAL BILLING** 

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

960917 \$1545

GUSTOMER #(

802

CONTRACT# 7917,010

INVOICE DATE

SHIPPED DATE

9/18/96

PACKING LIST

3321

SOLD TO:

Chemetoo

3200 S. St. Louis St.

Chicago, IL 60623

96I 0517

ALLOY

DESCRIPTION

**NET LBS** 

PRICE

**AMOUNT** 

8722

3000 SERIES

33,876

\$0,26000

\$8,807.76

TOTAL DUE:

\$8,807.76

TERMS

**NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

APPROVED BY-

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE # 9609

CUSTOMER # \$1545 BOL# 807

CONTRACT#

807 7917.010 INVOICE DATE

SHIPPED DATE

9/19/96 9/19/96

PACKING LIST 3323

96_I0518

SOLD TO:

Chemetoo

3200 S, St. Louis St. Chicago, IL 60623

ALLOY

DESCRIPTION

NET LES

PRICE .

**AMOUNT** 

8722

3000 SERIES

34,944

\$0.26000

\$9,085,44

TOTAL DUE:

\$9,085,44

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

.....

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 980922 CUSTOMER # \$1545 BOL# 817

CONTRACT# 7917.010

SOLD TO: Chemeteo

3200 S. St. Louis St. Chicago, 1L 60623 INVOICE DATE 9/27/96
SHIPPED DATE 9/27/96
PACKING LIST 3339

967 6522

ALLOY	DESCRIPTION	NETLBS	PRICE	AMOUNT
8722	2000 SERIES	34,668	\$0.25200	\$8,736.34

TOTAL DUE:

\$8,736.34

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

OCT-82-1996 11:21 FROM OLIN ACCOUNTING INDPLS



INVOICE # 960923 CUSTOMER # \$1545 BOL# 816

SHIPPED DATE
PACKING LIST

INVOICE DATE

9/26/96 3336

CONTRACT# 7917.010

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 246/361

Chemetoo

3200 S. St. Louis St. Chicago, IL 60623 96 I 0523

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES	11,576	\$0.25200	\$2,917.15
8722	6000 SERIES	22,908	\$0,25200	\$5,772.82

TOTAL DUE:

\$8,689.97

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY: PARTY

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



960924 **INVOICE#** CUSTOMER # (\$1545

813

CONTRACT#

BOL#

7917.010

INVOICE DATE 9/25/98

SHIPPED DATE 9/25/96

PACKING LIST

3334

96 I assuf

SOLD TO: Chemetoo

3200 S. St. Louis St. Chicago, IL 60623

ALLOY DESCRIPTION **NET LBS** 

PRICE

AMOUNT

8722 6000 SERIES

34,464

\$0.25200

\$8,684.93

TOTAL DUE:

\$8,684.93

TERMS **NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE #

961013 CUSTOMER # \$1545

BOL# CONTRACT# 841

7917.010

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 60623

INVOICE DATE 10/10/96

SHIPPED DATE

10/10/96

PACKING LIST

3373

96 9 0570

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES	34,432	\$0,26000	\$8,952,32

TOTAL DUE:

\$8,952.32

TERMS **NET 30 DAYS** 

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

TO

FINANCIAL



INVOICE # 961014 CUSTOMER# \$1545 BOL#

CONTRACTS

7917.010

Chemetoo

3200 S. St. Louis St. Chicago, IL 60623

INVOICE DATE 10/7/96

SHIPPED DATE **PACKING LIST** 

10/7/96

3369

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES	33,550	\$0.26000	\$8,723.00

TOTAL DUE:

\$8,723.00

TERMS **NET 30 DAYS** 

SOLD TO:

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

OCT-25-1996 11:18 FROM OLIN ACCOUNTING INDPLS

INVOICE # 861018
CUSTOMER # \$1545.
BOL# 845
CONTRACT# 7917,010

SHIPPED DATE PACKING LIST

INVOICE DATE

10/15/96 10/15/96 3382

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 60623 96 20517

ALLOY	DESCRIPTION		NET LBS	PRICE	AMOUNT
8722	3000 SERIES	• .	34,912	\$0.26000	\$9,077.12

TOTAL DUE:

\$9,077.12

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY: 285777

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

# LIN BRASS - INDIANAPOLIS INDIANAPOLIS, INDIANA

INVOICE # ( 961019) CUSTOMER# 51545 > BOL 847

CONTRACT# 7917.010

SOLD TO:

Chemetoo ....

3200 S, St. Louis St. Chicago, -IL 60623

INVOICE DATE 40/16/96 SHIPPED DATE 10/16/98 PACKING LIST 3387

96 8-0518

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES	33,224	\$0.26000	\$8,638.24

TOTAL DUE:

\$8,638.24

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359



INVOICE# 961026

CUSTOMER # \$1545

BOLF

861

CONTRACT#

7917.010

SOLD TO:

Chemetoo

3200 S. St. Louis St. Chicago, IL 60623

INVOICE DATE (10/23/96

SHIPPED DATE **PACKING LIST** 

3400

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES	13,862	\$0.26000	· \$3,604.12
8722	2000 SERIES	21,946	\$0.26000	\$5,705.96

**TOTAL DUE:** 

\$9,310.08

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

P. 96



INVOICE# 961028

CUSTOMER # \$1545

BOL# . CONTRACT#

858 7917.010

90LD TO:

Chemetoo

3200 9. St. Louis St. Chicago, IL 60623

10/22/96 INVOICE DATE SHIPPED DATE

10/22/96

**PACKING LIST** 

3396

96 9-05-31

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES	33,812	\$0.26000	\$8,791.12

. TOTAL DUE:

\$8,791.12

YERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO: **OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359



INVOICE# 991029

CUSTOMER # S1545

80L#

CONTRACT#

7917.010

SOLD TO:

Chemetoo

3200 S. St. Louis St.

Chicago, IL 60623

INVOICE DATE

SHIPPED DATE

10/24/96

**PACKING LIST** 

3401

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES	33,982	\$0,26000	\$8 835 32

TOTAL DUE:

\$8,835.32

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS-INDIANAPOLIS** 

P.O. BOX 92359

OCT-29-1996 14:33 FROM OLIN ACCOUNTING INDPLS



INVOICE # 961030

CUSTOMER # \$1545

BOL# 863

CONTRACT# 7917.010

INVOICE DATE 10/25/96 SHIPPED DATE 10/25/96 PACKING LIST 3403

TO

SOLD TO: Chemetoo

printed 06/01/2011 11:04AM by Luttie.Boarman p. 255/361

3200 S. St. Louis St. Chicago, IL 60623

96 20532

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES	29,304	\$0,26000	\$7,619,04
8722	2000 SERIES	6,930	\$0,26000	\$1,801.80

TOTAL DUE:

\$9,420.84

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

#DDDOWED BY

PLEASE REMIT TO:

**OLIN BRASS-INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # (

BOL#

CUSTOMER #

CONTRACT#

7917.010

INVOICE DATE (11/1/96)

SHIPPED DATE

11/1/96

**PACKING LIST** 

3408

SOLD TO:

Chemetco

3200 S. St. Louis St.

Chicago, IL 60623

ALLOY	DESCRIPTION	. NET LBS	PRICE	AMOUNT
8722	2000 SERIES	8,288	\$0.26000	\$2,154.88
8722	6000 SERIES	24,810	\$0.26000	\$6,450.60

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

**TOTAL DUE:** 

\$8,605.48

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # ( 961105

CUSTOMER # BQL#

856

CONTRACT#

7917.010

SOLD TO:

Chemetco

3200 S. St. Louis St. Chicago, IL 60623

INVOICE DATE

11/6/96

SHIPPED DATE

11/6/96

**PACKING LIST** 

3418

**ALLOY** 

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

8722

2000 SERIES

35,140

\$0.26000

\$9,136.40

**TOTAL DUE:** 

\$9,136.40

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE #

CUSTOMER # \$1545

BOL#

854

CONTRACT#

7917.010

SOLD TO:

Chemetco

3200 S. St. Louis St.

Chicago, IL 60623

INVOICE DATE

11/5/96

SHIPPED DATE

11/5/96

**PACKING LIST** 

3417

ALLOY	DESCRIPTION	NET LBS	PRICE	ТИИОМА
8722	3000 SERIES	15,112	\$0.26000	\$3,929.12
8722	2000 SERIES	17,132	\$0.26000	\$4,454.32

**TOTAL DUE:** 

\$8,383.44

TERMS NET 30 DAYS

**COMMENTS:** 

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE #

INVOICE # 961110 CUSTOMER # \$1545

BOL#

859

CONTRACT#

7917.010

INVOICE DATE

11/7/96

SHIPPED DATE

11/7/96

PACKING LIST 3

3424

رَجُ

SOLD TO:

Chemetco

16400 South Lanthrop

Harvey, IL 60426

96 KOSUS

ALLOY	DESCRIPTION	NET LBS	PRICE	TNUOMA
8722	6000 SERIES	12,682	\$0.26000	\$3,297.32
8722	3000 SERIES	18,368	\$0.26000	\$4,775.68

TOTAL DUE:

\$8,073.00

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

ADDDOVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.D. BOX 92359



INVOICE # 961119 CUSTOMER # \$1545

BOL#

882

CONTRACT# 7917,010

INVOICE DATE

11/27/96

SHIPPED DATE

11/27/96

PACKING LIST 3452

SOLD TO: Chemetoo

16400 South Lanthrop

Harvey, IL 60426

96×0518

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES	32,136	\$0.24750	\$7,953.66

TOTAL DUE:

\$7,953.66

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



print<del>q</del>d 06/01/2011 11:04AM by Luttie.Boar<del>man p</del>

## LIN BRASS - INDIANAPOLIS

INDIANAPOLIS, INDIANA

INVOICE#

CUSTOMER # \$1545

BOL#

880

CONTRACT# 7

7917.010

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE 11/25/96 SHIPPED DATE 11/25/96 PACKING UST 3450

π

96K 8577 05 19

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES	11,970	\$0.24750	\$2,962.58
8722	6000 SERIES	21,624	\$0.24750	\$5,351.94

**TOTAL DUE:** 

\$8,314,52

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

LIN BRASS-INDIANAPOLIS

INDIANAPOLIS, INDIANA

printed 06/01/2011 11:04AM by Luttie.Boarman p. 262/361

INVOICE #

961202

CUSTOMER #

\$15/15

BOL#

886

CONTRACT#

**VERBAL** 

Chan

Chemetco

16400 South Lanthrop .

Harvey, IL 60426

INVOICE DATE

12/4/96

SHIPPED DATE

12/4/96

**PACKING LIST** 

3454

96.20501

ALLOY

SOLD TO:

DESCRIPTION

**NET LBS** 

PRICE

**TRUOMA** 

8722

2000 SERIES

35,208

\$0.28000

\$9,858.24

**TOTAL DUE:** 

\$9,858.24

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY

PLEASE REMIT TO:

OLÍN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

CUSTOMER # (\$1545 BOL#

885

VERBAL

CONTRACT#

INVOICE DATE SHIPPED DATE

12/4/96

PACKING LIST

3455

SOLD TO:

Chemetco

16400 South Lanthrop

Harvey, IL 60426

9630502

**ALLOY** 

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

8722

3000 SERIES

33,564

\$0.28000

\$9,397.92

TOTAL DUE:

\$9,397.92

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



# LIN BRASS - INDIANAPOLIS

#### INDIANAPOLIS, INDIANA

INVOICE #

DEC-26-1996 13:06 FROM

CUSTOMER # (\$4569)

BOL#

898

CONTRACT#

VERBAL

SOLD TO:

840 Delhusy Ave

840 Deliway Ave.

Cincinnati, OH 45229 1/04/50

.

7.7

INVOICE DATE 12/11/96
SHIPPED DATE 12/11/98
PACKING LIST 3471

9670504

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES	5,728	\$0.29250	\$1,874.86
8722	6000 SERIES	15.764	\$0.29250	\$4,610.97

TOTAL DUE:

\$6,285.83

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



## LIN BRASS - INDIANAPOLIS

#### INDIANAPOLIS, INDIANA

INVOICE# < 961208

CUSTOMER # 54569

899

CONTRACT#

**VERBAL** 

SOLD TO:

. BOL#

eleteth M.B.M

840 Deliway Ave.

Cincinnati, OH 45229 Courseles

INVOICE DATE SHIPPED DATE

12/12/96

**PACKING LIST** 

3472

96 20505

ALLOY

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

8722

3000 SERIES

34,254

\$0.29250

\$10,019.30

TOTAL DUE:

\$10,019.30

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



printed 06/01/2011 11:04AM by Luttie.Boarman p. 266/361

#### LIN BRASS - INDIANAPOLIS

INDIANAPOLIS, INDIANA

INVOICE # 961211

CUSTOMER# S1545

BOL#

900

CONTRACT# VERBAL

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

(1)

INVOICE DATE 12/19/98

SHIPPED DATE

12/19/96

PACKING LIST

3488

96 20509

ALLOY	

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

8722

3000 SERIES

34,388

\$0.29250

\$10.058.49

TOTAL DUE:

\$10,058.49

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



JAN-02-1997 08:16 FROM OLIN ACCOUNTING INDPLS

INVOICE #

SOLD TO:

CUSTOMER #

CONTRACT#

898

898 VERBAL

Chemetco

16400 South Lanthrop Harvey, IL 60426 INVOICE DATE

SHIPPED DATE
PACKING LIST

12/18/96 12/18/96 3481

96 20510

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES	32,486	\$0.29250	

TOTAL DUE:

\$9,502.16

TERMS NET 30 DAYS

COMMENTS:

PROVISIONAL BILLING

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

CUSTOMER # S1545 BOL# 905

CONTRACT# VERBAL INVOICE DATE (

12/27/96

SHIPPED DATE

12/27/96

**PACKING LIST** 

3492

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

9620514 .OU

ALLOY	DESCRIPTION	net les	PRICE	THUOMA
8722	2000 SERIES	33,362	\$0,29250	\$9,758.39

TOTAL DUE:

\$9,758.39

TERMS NET 30 DAYS COMMENTS:

PROVISIONAL BILLING



्र सम्बद्ध संस्था

INVOICE # ( 870114

CUSTOMER # \$1545

BOL#

CONTRACT#

VERBAL

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE 01/27/97

SHIPPED DATE

01/21/97

**PACKING LIST** 

TO

3514

97A0574

ALLOY

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

8722

2000 SERIES FURNACE SCREENINGS

32,310

\$0.37500

\$12,116.25

**TOTAL DUE:** 

\$12,116.25

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE # (

CUSTOMER #

BOL#

CONTRACT#

VERBAL

SOLD TO: Chemetoo

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE (

01/27/97

SHIPPED DATE

01/22/97

PACKING LIST

3521

97A0575

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	35 044	\$0.37500	\$13,141.50

**TOTAL DUE:** 

\$13,141.50

erasi,

TERMS NET 30 DAYS COMMENTS:

PLEASE REMITTO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 970119
CUSTOMER # \$1545
BOL# 938
CONTRACT# VERBAL

INVOICE DATE 01/30/97
SHIPPED DATE 01/23/97
PACKING LIST 3527

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 97A 0517

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	34,034	\$0.37500	\$12,762.75

TOTAL DUE:

\$12,762.75

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY: 24

PLEASE REMIT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60675-2359

1.1.1.17



INVOICE# 970120 CUSTOMER ( BOL#

CONTRACT# VERBAL

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 272/361

Chemetoo

16400 South Lanthrop Harvey, IL 60426

01/30/97 INVOICE DATE ( SHIPPED DATE 01/24/97 3529 **PACKING LIST** 

TO

974.0518

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
0929	TIN SKIMMINGS	41,498	\$1,50000	\$62,247.00

TOTAL DUE:

\$62,247.00

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359



ENVOICE # 970124
CUSTOMER # S1545
BOL# 944
CONTRACT# VERBAL

INVOICE DATE 01/29/97
SHIPPED DATE 01/29/97
PACKING LIST 3535

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 0.573

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SKIMMINGS	9,096	\$0.37500	\$3,411.00
8722	3000 SERIES FURNACE SKIMMINGS	17,296	\$0.37500	\$6,486.00

**TOTAL DUE:** 

\$9,897.00

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P.02

Same La

2011.50

¥,



INVOICE # 970208
CUSTOMER # \$1545
BOL# 976
CONTRACT# VERBAL

INVOICE DATE 02/17/97
SHIPPED DATE 02/11/97
PACKING LIST 3566

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 97B0507

ALLOY	DESCRIPTION	NET LBS	PRICE	I AMOUNT
8722	6000 SERIES FURNACE SKIMMINGS	2,528	\$0.37500	\$948.00
8722	3000 SERIES FURNACE SKIMMINGS	31,158	\$0,37500	\$11,684.25

TOTAL DUE:

\$12,632.26

1246 5 134

English (2)

TERMS NET 30 DAYS COMMENTS:

ADDROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 82359

CHICAGO, IL 60675-2359

\$12732.5



INVOICE # 970211 CUSTOMER # 61545

BOLW

977

CONTRACTS VERBAL

INVOICE DATE 2/21/97
SHIPPED DATE 02/19/97
PACKING LIST 3574

TO

9780570

SOLD TO: Chemetoo

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	34,760	\$0,42500	\$14,773.00

TOTAL DUE:

\$14,773.00

**श**ित्र सन्त्रीर

TERMS NET 39 DAYS COMMENTS:

APPROVED BY:



INVOICE # 970217

CUSTOMER # (\$1545 BOL#

984

**VERBAL** CONTRACTS

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE SHIPPED DATE 02126/97 02/21/97

**PACKING LIST** 

3583

9780577

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

8722

2000 SERIES FURNACE SKIMMINGS

34,386

\$0.42500

\$14,592,80

TOTAL DUE:

TERMS NET 30 DAYS

COMMENTS:

PLEASE RENIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60679-2359



INVOICE # 970219
CUSTOMER # \$1545
BOL# 979
CONTRACT# VERBAL

INVOICE DATE 02/26/97
SHIPPED DATE 02/20/97
PACKING LIST 3576

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 9760516

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	35,384	\$0.42500	315,038.20

TOTAL DUE:

\$15,038.20

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY:

PLEASE RENIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

1 Biol 19

---

MAR-64-1997 13:09 FROM OLIN ACCOUNTING INDPLS



INVOICE # 97022 CUSTOMER # \$1545

BOL#

printed 06/01/2011 11:04AM by Luttie.Boarman p. 278/361

CONTRACT# VERBAL

INVOICE DATE

SHIPPED DATE 02/27/5

PACKING LIST 3593

9760504

SOLD TO: Chemetoo

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	34,792	\$0.42500	\$14,788.60

TOTAL DUE:

\$14,786.60

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY:_

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS. P.O. BOX 92359

CHICAGO, IL 60675-2359



INVOICE #

970302

CUSTOMER # \$1545 BOL#

CONTRACT#

994

**VERBAL** 

INVOICE DATE (03/10/97

SHIPPED DATE

03/03/97

**PACKING LIST** 

3596

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60428

97C 0.50/

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

8722

3000 SERIES FURNACE SKIMMINGS

34,894

\$0.42500

\$14,829.95

TOTAL DUE:

\$14,829.95

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 970303 CUSTOMER # \$1545

BOU#

998

CONTRACT#

VERBAL

SQLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE (03/10/97)

SHIPPED DATE

03/04/97

**PACKING LIST** 

3600

97C0502

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

8722

2000 SERIES FURNACE SKIMMINGS

34,424

\$0,42500

\$14,630.20

**TOTAL DUE:** 

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # CUSTOMER # S1545

BOL# CONTRACT#

SOLD TO:

1000

**VERBAL** 

Chemetco

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE 03/10/97 SHIPPED DATE 03/05/97 **PACKING LIST** 3604

9700503

ALLOY	DESCRIPTION	NET LOS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SKIMMINGS	33,688	\$0.42500	\$14,402.40

TOTAL DUE:

\$14,402,40

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INDIANAPOLIS, INDIANA

INVOICE # 970305 CUSTOMER # \$1545

BOL#
CONTRACT#

1001 VERBAL INVOICE DATE

03/10/97

SHIPPED DATE
PACKING LIST

03/06/97 3605

SOLD TO: Chemetoo

16400 South Lanthrop Harvey, IL 60426 97 C-050g

_	ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
	8722	2000 SEREIS FURNACE SKIMMINGS	35,364	\$0.42500	\$15,029.70

TOTAL DUE:

\$15,029.70

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359



CUSTOMER # \$1545
BOLS 1008
CONTRACTS VERBAL

INVOICE DATE 03/13/97 SHIPPED DATE 03/13/97 PACKING LIST 3613

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 9700510

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	33,058	\$0.40000	\$13,223.20

TOTAL DUE:

\$13,223,20

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60675-2359

TOTAL P.01 1 V

P.03



INVOICE # 970310 CUSTOMER # \$1545 BOL# 1008

VERBAL

SOLD TO:

CONTRACT#

Chemetco

16400 South Lanthrop Harvey, IL 60426 SHIPPED DATE 03/12/97
PACKING LIST 3612

97C0509

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	33,868	\$0.40000	\$13,547.20

TOTAL DUE:

\$13,547.20

TERMS NET 30 DAYS COMMENTS:

APPROVED BY: XYM



INVOICE # CUSTOMER# S1545 BOL# 1012 CONTRACT#

INVOICE DATE ( 03/20/97/ SHIPPED DATE **PACKING LIST** 3615

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

**VERBAL** 

9700512

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	34,370	\$0.40000	\$13,748.00

TOTAL DUE:

\$13,748.00

TERMS NET 30 DAYS COMMENTS:



INVOICE # 970316
CUSTOMER # S1545
BOL# 1016
CONTRACT# VERBAL

INVOICE DATE 03/20/97
SHIPPED DATE 03/18/97
PACKING LIST 3618

TO

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 97C 0515

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SKIMMINGS	34,458	\$0.40000	\$13,783.20

TOTAL DUE:

\$13,783.20

TERMS NET 30 DAYS

APPROVED BY: THY



INVOICE # 970317.
CUSTOMER # \$1545
BOL# 1020

CONTRACT# VERBAL

INVOICE DATE 03/24/97
SHIPPED DATE 03/19/97
PACKING LIST 3623

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 97C0516

ALLOY	DESCRIPTION	NET LBS	PRICE	ANOUNT
8722	3000 SERIES FURNACE SKIMMINGS	35.720	\$0,40000	\$14,288.00

TOTAL DUE:

\$14,288.00

TERMS NET 30 DAYS COMMENTS:

APPROVED BY: DYTT



INVOICE #

970319

CUSTOMER# \$1545 BOL#

1024

CONTRACT# **VERBAL**  INVOICE DATE 03/24/97

SHIPPED DATE

**PACKING LIST** 

ŦO

3628

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

97C 0518

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

**AMOUNT** 

8722

printed 06/01/2011 11:04AM by Luttie-Boarman p. 288/361

2000 SERIES FURNACE SKIMMINGS

32,400

\$0.40000

\$12,960.00

TOTAL DUE:

\$12,960.00

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO: **OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P.09



INVOICE # 970320 CUSTOMER# S1545

BOL#

CONTRACTS VERBAL

INVOICE DATE (_03/28/97_)

SHIPPED DATE

03/21/97

PACKING LIST

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 289/361

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

9700519

ALLOY

DESCRIPTION

**NET LBS** 

PRICE

**AMOUNT** 

8722

3000 SERIES FURNACE SKIMMINGS

34,042

\$0,40000

\$13,616.80

**TOTAL DUE:** 

\$13,616.80

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



CUSTOMER # \$1545
BOL# 1060
CONTRACT# VERBAL

SHIPPED DATE 04/10/97
PACKING LIGT 3669

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL, 60426 9700570

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SKIMMINGS	4,890	\$0,40000	\$1,956.00
8722	3000 SERIES FURNACE SKIMMINGS	28,984	\$0.40000	\$11,593.60

TOTAL DUE:

\$13,549.60

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P.18



INVOICE # 970405
CUSTOMER # \$1545
BOL# 1048
CONTRACT# VERBAL

INVOICE DATE 4/11/97 SHIPPED DATE 04/02/97 PACKING LIST 3655

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 970 050-

ALLOY	DESCRIPTION	NET LBS	PRIČE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	34,158	\$0.40000	\$13,663.20

TOTAL DUE:

\$13,663.20

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS P.O. BOX 92359



INVOICE # 970496
CUSTOMER # \$1545
BOL# 1050
CONTRACTW VERBAL

INVOICE DATE 4/11/97
SHIPPED DATE 04/03/97
PACKING LIST 3656

SOLD TO:

Chemetoo

16400 South Lenthrop Harvey, IL 60426 9700503

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNŤ
8722	3000 SERIES FURNACE SKIMMINGS	34,596	\$0,40000	\$13,838.40

TOTAL DUE:

\$13,838.40

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE RENT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60675-2359



INVOICE #

CUSTOMER # \$1545 BOL#

1052 CONTRACT# **VERBAL**  INVOICE DATE 4/11/97 SHIPPED DATE

04/04/97

**PACKING LIST** 3659

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

9700506

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	33,218	\$0.40000	\$13,287.20

TOTAL DUE:

\$13,287.20

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60875-2359

P.87



USTOMER # \$70410
CUSTOMER # \$1545
BOL# 1054
CONTRACT# VERBAL

SHIPPED DATE 04/07/97
PACKING LIST 3660

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60428 9710507

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	35.556	\$0.40000	\$14,222.40

TOTAL DUE:

\$14,222,40

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359



INVOICE # 970411 CUSTOMER # (\$1545

BOL#

1059

CONTRACT# VERBAL

INVOICE DATE ( SHIPPED DATE

04/09/97 PACKING LIST

3666

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

9700508

ALLOY	DESCRIPTION		NET LBS	PRICE	THUCKA
8722	2000 SERIES FURNACE SKIMMINGS	*	33,250	\$0,40000	\$13,300,00

**TOTAL DUE:** 

\$13,300.00

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO: **OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359 CHICAGO, IL 60675-2359



INVOICE# CUSTOMER # 81545 1065

CONTRACT# **VERBAL** 

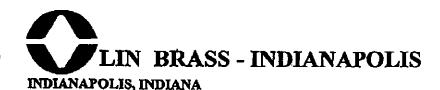
Chemetoo SOLD TO:

> 16400 South Lanthrop Harvey, IL 60428

INVOICE DATE ( 4/21/97 SHIPPED DATE 4/14/97 PACKING LIST 3674

9710511

P.02


ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8 <b>722</b>	2000 SERIES FURNACE SKIMMINGS	7,306	\$0.40000	\$2,922.40
8722	6000 SERIES FURNACE SKIMMINGS	24,768	\$0.40000	\$9,907.20

TOTAL DUE:

\$12,829.60

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO: **OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359



INVOICE # 970412
CUSTOMER # \$1545
BOL# 1069
CONTRACT# VERBAL

SHIPPED DATE 4/16/97
PACKING LIST 3879

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426 971) 0512

ALLOY	DESCRIPTION	NET LBS	PRICE	TRUONILA
8722	2000 SERIES FURNACE SKIMMINGS	34,474	\$0,40000	\$13,789.60

TOTAL DUE:

\$13,789.60

TERMS NET 30 DAYS COMMENTS:

APPROVED BY: WYTH

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

P.02



INVOICE# 970416
CUSTOMER # \$1545
BOL# 1082
CONTRACT# VERBAL

SHIPPED DATE 04/23/97
PACKING LIST 3894

TO

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 971) 0517

ALLOY	DESCRIPTION	NET LB9	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	34,580	\$0.40000	\$13,832.00

34,580

TOTAL DUE:

\$13,832.00

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

SOLD TO:

CUSTOMER # (\$1545

BOL#

1093 **VERBAL** 

CONTRACT#

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE SHIPPED DATE

PACKING LIST

3709

97D0519

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	35,872	\$0.40000	\$14,348.80

35,872

TOTAL DUE:

\$14,348,80

TERMS NET 30 DAYS

COMMENTS:

**PLEASE REMIT TO:** 

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE # 970421 CUSTOMER # \$1545

BOL# 1086 CONTRACT# VERBAL INVOICE DATE 6/01/07
SHIPPED DATE 4/24/97
PACKING LIST 3700

SOLD TO:

Chemetoo

16400 South Länthrop Harvey, IL 80426 9710501

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	32,770	\$0.40000	\$13,108.00

32,770

TOTAL DUE:

\$13,108.00

TERMS NET 30 DAYS

ADDDOVED BY

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE # 970422 CUSTOMER # \$1545 BOL# 1070

CONTRACT# VERBAL

INVOICE DATE 4/22/97 SHIPPED DATE 4/17/97 PACKING LIST 3881

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 9100500

ALLOY	DESCRIPTION	NET LB\$	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	25,582	\$0.40000	\$10,232.80

25,582

TOTAL DUE:

\$10,232.80

TERMS NET 30 DAYS COMMENTS:

APPROVED RY

PLEASE REWIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P.89



INVOICE # 970507 CUSTOMER # \$1548 BOL# 1108 CONTRACT#

INVOICE DATE SHIPPED DATE **PACKING LIST** 

(05/12/97) 05/08/97 3726

SOLD TO:

Chemetop

16400 South Lanthrop Harvey, IL 60426

VERBAL

97E0506

ALLOY	DESCRIPTION	NET L89	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	34,080	\$0,40000	\$13,632.00

34,080

TOTAL DUE:

\$13,632.00

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # CUSTOMER # \$1545 BOF# 1100 CONTRACTS

VERBAL

INVOICE DATE (05/09/97 SHIPPED DATE 05/05/97 PACICINO LIST 3720

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

97E0508

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	32,580	\$0,40000	\$13,032.00

32,580

TOTAL DUE:

\$13,032.00

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P.07



INVOICE # ( 970510 CUSTOMER# (\$1545)

CONTRACT#

1116 **VERBAL** 

SOLD TO:

Chemetoo 18400 South Lanthrop Harvey, IL 60426

INVOICE DATE 5/15/97

SHIPPED DATE

5/13/97

**PACKING LIST** 3737

97E0503

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	6,464	\$0.40000	\$2,581.60
8722	6000 SERIES FURNACE SKIMMINGS	27,418	\$0.40000	\$10,967.20

33,872

TOTAL DUE:

\$13,548.80

TERMS NET 30 DAYS

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # CUSTOMER # 1110 CONTRACTO VERBAL

INVOICE DATE 6/14/97 SHIPPED DATE 5/12/97 3732 **PACKING LIST** 

SOLD TO:

Chemetoo

 $\mathcal{N}_{\mathcal{B}_{2}}:$ 

18400 South Lanthrop Harvey, IL 60428

97E0511

CHICAGO, IL 60675-2359

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	33,364	\$0.40000	\$13,345.60
	* (c)			
1. 60 64	s Biglion Call			
<b>4.</b>	The Reserve Control of the Control o	33,364	TOTAL DUE:	\$13,345.60
TERMS NET	130 DAYS	+ 5		,
COMMENTS:	er i de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició de la servició d	5.44.21	PLEASE REMIT TO: OLIN BRASS - INDIA	NABOLI IS
APPROVED BY:	Differ		P.O. BOX 92359 CHICAGO, IL 60675-	

TOTAL P.04

MAY-29-1997 08:17 FROM DLIN ACCOUNTING INDPLS

70

FINANCIAL

P. 02



INVOICE # 970513
CUSTOMER # \$1545
BOL# 1124
CONTRACT# VERBAL

SHIPPED DATE 5/19/97
PACKING LIST 3748

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426 97E05/3

ALLOY	DESCRIPTION	NET LBS	PRICE	THUOMA
8722	3000 SERIES FURNACE SKIMMINGS	32,324	\$0.40000	\$12,929.60

32,324

TOTAL DUE:

\$12,929.60

TERMS NET 30 DAYS COMMENTS:

APPROVED BY: PYTY

PLEASE REMIT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60975-2359



INVOICE # 970515 CUSTOMER # 91545 BOL# 1129 CONTRACT# VERBAL

INVOICE DATE 5/22/97
SHIPPED DATE 5/20/97
PACKING LIST 3752

SOLD TO:

printed 06/01/2011-14:04AM by Luttie.Boarman p. 307/361

Chemetco

16400 South Lanthrop Harvey, IL 60426 97E0515

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	32,262	\$0.40000	\$12,904.80

32,262

TOTAL DUE:

\$12,904.80

TERMS NET 30 DAYS

APPROVED BY:

PLEASE RENIT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60678-2359

P. 02

INVOICE # S1645 BOL#

INVOICE DATE 5/30/97 SHIPPED DATE

**PACKING LIST** 

5/27/97 3762

SOLD TO:

Chemetoo

CONTRACT#

16400 South Lanthrop Harvey, IL 60426

**VERBAL** 

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	18,122	\$0.40000	\$7,248.80

18,122

TOTAL DUE:

\$7,248.80

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



97 E0518

INVOICE # 970518
CUSTOMER # \$1545
BOL# 1142

SHIPPED DATE PACKING LIST

INVOICE DATE

5/30/97 5/28/97 3764

CONTRACT# VERBAL

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LOS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	33.474	\$0,40000	\$13,389.60

33,474

**TOTAL DUE:** 

\$13,389.60

TERMS NET 30 DAYS COMMENTS:

ADDOMES DV.

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



97E6519

INVOICE# ( 970519 CUSTOMER# (\$1545 BOL# CONTRACT# VERBAL

INVOICE DATE 5/30/97 SHIPPED DATE 5/29/97 **PACKING UST** 3767

ŒΤ

Chemetoo SOLD TO:

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	ANOUNT
8722	2000 SERIES FURNACE SKIMMINGS	34,412	\$0,40000	\$13,764.80

34,412

TOTAL DUE:

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO: **OLIN BRASS - INDIANAPOLIS** P.O. BOX 92359 CHICAGO, IL 80675-2359

JUN-03-1997 13:24 FROM DLIN ACCOUNTING INDALS

TO

FINANCIAL

P. 02



INVOICE # 970622 CUSTOMER # S1545 BOL# 1148

CONTRACT# VERBAL

INVOICE DATE SHIPPED DATE PACKING LIST

-6/03/97 5-30-97 05/30/97

ST 3770

\$ 1545

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	33,996	\$0.40000	\$13,598.40
			\	$\times$
		33,996	TOTAL DUE:	\$13,598.40

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO: OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 80675-2359

Post-It™ brand fax transmitt	al memo 7671 # of pages > ">
かまたの	From
Dept	Co.
Fax #	Phone #
	Fax #



INVOICE # 970523 CUSTOMER# \$1545 BQL# 1150 CONTRACTS

**VERBAL** 

Chemetoo SOLD TO:

> 16400 South Lanthrop Harvey, IL 60426

INVOICE DATE GARAGE 5-30SHIPPED DATE 05/30/97

**PACKING LIST** 

3769

\$ 1545

AMOUNT	PRICE	NET LBS	DESCRIPTION	ALLOY
\$8,648.80	\$0.40000	21,622	2000 SERIES FURNACE SKIMMINGS	8722
\$4,931.20	\$0.40000	12,328	3000 SERIES FURNACE SKIMMINGS	8722
X	)			
\$13,580.00	TOTAL DUE:	33,960		

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO: -OLIN BRASS - INDIANAPOLIS P.O. BOX 92359 CHICAGO, IL 60675-2359



NVOICE # 970501 CUSTOMER # \$1545 BOL# 1158

CONTRACT# VERBAL

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 INVOICE DATE 06/11/97
SHIPPED DATE 6/05/97
PACKING LIST 3779

97F0503

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	33,924	\$0.37500	\$12,721.50

33,924

... ...

TOTAL DUE:

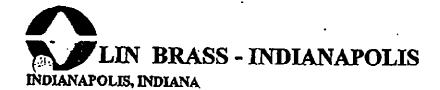
\$12,721.50

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY:

The second state


PLEASE REMIT TO:

**OLIN BRASS - ENDIANAPOLIS** 

P.O. BOX 92359

CHICAGO, R. 60675-2359

TOTAL P.07



INVOICE # 970802
CUSTOMER # \$1545
BOL# 1160
CONTRACT# VERBAL

INVOICE DATE 08/1/97
SHIPPED DATE 6/06/97
PACKING LIST 3784

SOLD TO:

Chemetoo

·18400 South Lanthrop Harvey, IL 60426 97 FUSOU

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	33,582	\$0.37500	\$12,593.25

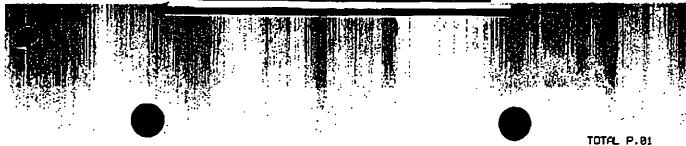
 $\bigcirc$ 

23.582

TOTAL DUE:

\$12,593.25

TERMS NET 30 DAYS COMMENTS:


APPROVED BY:

PLEASE RENET TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60675-2359

Prost-It brand fax transmittal memo 7871 For pages P

To Stah hust From 11. Lind Say
Co.
Dept. Phone F

Pax #





INVOICE # 970607
CUSTOMER # \$1545
BOL# 1178
CONTRACT# VERBAL

SHIPPED DATE 6/12/97
PACKING LIST 3801

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 97F 0506

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	33,262	\$0.37500	\$12,473.25

33,262

TOTAL DUE:

\$12,473.25

TERMS NET 30 DAYS COMMENTS:

APPROVED BY: 24M

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

970613

CUSTOMER # S1545

1181

CONTRACT# **VERBAL** 

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE

SHIPPED DATE

**PACKING LIST** 

3803

97F0512

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SKIMMINGS	30,624	\$0.33750	\$10,335.60

30,624

TOTAL DUE:

\$10,335.60

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 970703 CUSTOMER #/

BOL# CONTRACT#

1188 **VERBAL**  INVOICE DATE

7/10/97

SHIPPED DATE

7/03/97

**PACKING LIST** 

3810

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

9760519

ALLOY	DESCRIPTION	NET LAS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	22,710	\$0.33750	\$7,864.63

22,710

**TOTAL DUE:** 

\$7,664.63

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

JUL-17-1997 08:20 FROM DLIN ACCOUNTING INDPLS



INVOICE # 970704
CUSTOMER \$1545
BOL# 1195
CONTRACT# VERBAL

INVOICE DATE 7/14/97
SHIPPED DATE 7/09/97
PACKING LIST 3818

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 318/361

Chemetoo

16400 South Lanthrop Harvey, IL 60426 976-0521

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURANCE SKIMMINGS	33,340	\$0.33750	\$11,252,25

33,340

TOTAL DUE:

\$11,252,25

TERMS NET 30 DAYS
COMMENTS;

APPROVED BY

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



printed 06/01/2011 11:04AM by Luttie.Boarman p. 319/361

## LIN BRASS - INDIANAPOLIS

OLIN ACCOUNTING INDPLS

INDIANAPOLIS, INDIANA

INVOICE# CUSTOMER

BOLF CONTRACT#

**VERBAL** 

INVOICE DATE

7/14/97

SHIPPED DATE

7/10/97

**PACKING LIST** 

3820

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

9760520

**ALLOY** 

DESCRIPTION

**NET LBS** 

PRICE

**TKUOMA** 

8722

3000 SERIES FURNACE SKIMMINGS

32,956

\$0,33750

\$11,122.65

32,956

TOTAL DUE:

\$11,122.65

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P.04



INVOICE # . 970707. CUSTOMER & \$1545

BOL#

1204

CONTRACT#

**VERBAL** 

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

INVOICE DATEC 7/21/97

SHIPPED DATE

7/16/97

**PACKING LIST** 

3828

97G0500

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	34,114	\$0.33750	\$11,513.48

34,114

TOTAL DUE:

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

JUL-24-1997 88:23 FROM DLIN ACCOUNTING INDPLS . TO



INVOICE # 970708
CUSTOMER # S1545
BOL# 1205
CONTRACT# VERBAL

INVOICE DATE 7/21/97
SHIPPED DATE 7/17/97
PACKING LIST 3829

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 321/361

Chemetco

16400 South Lanthrop Harvey, IL 60426 9760503

<b>T</b>	ALLOY	DESCRIPTION	NETLBS	PRICE	AMOUNT
-	8722	2000 SERIES FURNACE SKIMMINGS	18,018	\$0.31500	\$5,675.67
;	8722	6000 SERIES FURNACE SKIMMINGS	15,828	\$0.31500	\$4,985.82

33,846

TOTAL DUE:

\$10,661.49

TERMS NET 30 DAYS COMMENTS:

APPROVED BY

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



printed-06/01/2011 11:04AM by Luttie.Boarman p. 322/361

## LIN BRASS-INDIANAPOLIS

INDIANAPOLIS, INDIANA

INVOICE # 970709

CUSTOMER # (\$1545

BOL#

1203

CONTRACT# **VERBAL** 

SOLD TO:

Chemetco

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE 7/21/97

SHIPPED DATE

7/15/97

**PACKING LIST** 

3825

9760524

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	35,018	\$0.33750	\$12,156.08

36,018

TOTAL DUE:

\$12,156.08

TERMS NET 30 DAYS

**COMMENTS:** 

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE #

CUSTOMER#

BOL# CONTRACT#

1261 **VERBAL** 

970717

SOLD TO:

Chemetoo .

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE

SHIPPED DATE

**PACKING LIST** 

3847

976-0532

FINANCIAL

PRICE **AMOUNT** ALLOY DESCRIPTION NET LBS \$11,241.09 8722 \$0.31500 3000 SERIES FURNACE SKIMMINGS 35,686

35,688

TOTAL DUE:

\$11,241.09

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 97.0718

CUSTOMER # \$1545

BOL# 1237

CONTRACT#

INVOICE DATE SHIPPED DATE PACKING LIST

TO

8/04/94 7/28/97 3838

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

VERBAL

976 0533

ALLOY	DESCRIPTION	NET LBS	PRICE	 AMOUNT
8722	2000 SERIES FURNACE SKIMMINGS	35,762	\$0,31500	\$11,265.03

35,762

TOTAL DUE:

\$11,265.03

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY: BYTYY

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

AUG-84-1997 09:13 FROM OLIN ACCOUNTING INDPLS



INVOICE# (

printed 06/01/2011 11:04AM by Luttie.Boarman p. 325/361

CUSTOMER # (\$1545.

BOL#

CONTRACT#

1233

VERBAL

SOLD TO: C

Chemetoo

16400 South Lanthrop Harvey, IL 60426 INVOICE DATE

7/3//97 8/04/07

SHIPPED DATE

7/25/97

PACKING LIST 3835

9760534

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SKIMMINGS	33,938	\$0.31500	\$10,690.47

33,938

TOTAL DUE:

\$10,690.47

TERMS NET 30 DAYS

COMMENTS:

ADDDOVEN BY

200

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 970807 BOL#

AUG-21-1997 16:18 FROM

CONTRACT#

printed 06/01/2011 11:04AM by Luttie.Boarman p. 326/361

1306

**VERBAL** 

INVOICE DATE SHIPPED DATE PACKING LIST

8/18/97 8/13/97

3858

Chemetco · SOLD TO:

16400 South Lanthrop Harvey, IL 60426

9740508

ALLÍOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
3538	O. A. CAKE CUTS	38,370	\$0.46000	\$17,650.20

OLIN ACCOUNTING INDPLS

38,370

TOTAL DUE:

\$17,650.20

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:____

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

printed 06/01/2011 11:04AM by Luttie.Boarman p. 327/361

## LIN BRASS - INDIANAPOLIS

## INDIANAPOLIS, INDIANA

INVOICE #

CUSTOMER # (\$1545)

BOL#

1305

CONTRACT **VERBAL** 

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE (8/18/97

SHIPPED DATE

8/13/97

PACKING LIST 3857

TO

97/0509

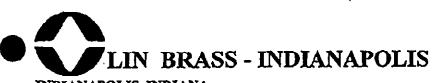
ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
1458	O. A. CAKE CUTS	38,630	\$0.87000	\$33,808.10

38,630

TOTAL DUE:

\$33,608.10

TERMS NET 30 DAYS COMMENTS:


APPROVED BY: BR.SI

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

AUG-28-1997 13:05 FROM OLIN ACCOUNTING INDPLS



INDIANAPOLIS, INDIANA

INVOICE # 970815 CUSTOMER # S1545 1310

INVOICE DATE 8/20/97 SHIPPED DATE **PACKING LIST** 

8/15/97 3862

CONTRACT#

**VERBAL** 

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 328/361

Chemetco

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	33,954	\$0.31500	\$10,695.51

33,954

**TOTAL DUE:** 

\$10,695.51

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS-INDIANAPÓLIS** 

P.O. BOX 92359



INVOICE # 970817
CUSTOMER # \$1545
BOL# 1324
CONTRACT# VERBAL

INVOICE DATE 8/21/97
SHIPPED DATE 8/20/97
PACKING LIST 3871

SOLD TO:

<del>pr</del>inted <del>96</del>/9<del>1/20</del>11 11:04AM by Luttie.Boa<del>rmar</del>

Chemetoo

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SCREENINGS	33,752	\$0.31500	\$10,631,88

33,752

TOTAL DUE:

\$10,631.88

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

AUG-28-1997 13:05 FROM DLIN ACCOUNTING INDPLS



INVOICE # CUSTOMER #

BOL#

SOLD TO:

printed 96/01/2011 11:04AM by Luttie.Boarman p. 330/361

970821 \$1545 1317

CONTRACT#

VERBAL

TRACT# VERBA

Chemetco

16400 South Lanthrop Harvey, IL 60426 SHIPPED DATE 8/19/97
PACKING LIST 3869

10

9740518

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	33,772	\$0.31500	\$10,638.18

33,772

TOTAL DUE:

\$10,638.18

TERMS NET 30 DAYS

COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 970902 CUSTOMER # \$1545 BOL#

1353

**CONTRACT# VERBAL** 

INVOICE DATE SHIPPED DATE 3904 PACKING LIST

SOLD TO:

printed 06/Q1/2011 11:04AM by Luttie.Boarman p. 331/361

Chemetoo 16400 South Lanthrop Harvey, IL. 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SCREENINGS	33,564	\$0.31500	\$10,572.66

33,564

TOTAL DUE:

\$10,572.66

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

INVOICE# (970905 CUSTOMER# \$1545 1358 CONTRACT# **VERBAL** 

INVOICE DATE (9/12/97) SHIPPED DATE 9/10/97 **PACKING LIST** 3908

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	31,328	\$0.31500	\$9,868.32

31,328

**TOTAL DUE:** 

\$9,868.32

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMITTO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



970905

BOL#

1360

CONTRACT# **VERBAL** 

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE (

TO

9/16/97

SHIPPED DATE

**PACKING LIST** 

ALLOY

printed 0<del>6/01/2</del>011 11:04AM by Luttie.Boarman p. 333/361

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

8722

2000 SERIES FURNACE SCREENINGS

20,308

\$0.31500

\$6,397.02

20,308

TOTAL DUE:

\$6,397.02

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

## LIN BRASS - INDIANAPOLIS

## INDIANAPOLIS, INDIANA

BOL#

INVOICE # CUSTOMER # (\$1545

970908

CONTRACT#

**VERBAL** 

INVOICE DATE 9/25/97

SHIPPED DATE

9/19/97

PACKING LIST

3922

SOLD TO:

Chemetco

16400 South Lanthrop

Harvey, IL 60426

97 I 0508

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	34,194	\$0.31500	\$10,771.11

34,194

TOTAL DUE:

\$10,771.11

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**DLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 970909 CUSTOMER # \$1545

BOL#
CONTRACT#

SOLD TO:

1368

VERBAL

Chemetoo

16400 South Lanthrop Harvey, IL 60426 INVOICE DATE 9/25/97
SHIPPED DATE 9/18/97
PACKING LIST 3919

97.I asog

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	33,216	\$0.31500	\$10,463.04

33,216

**TOTAL DUE:** 

\$10,463.04

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



INVOICE # 970910 CUSTOMER # \$1545 BOL# 1369 CONTRACT# VERBAL SHIPPED DATE 9/18/97
PACKING LIST 3920

TO

SOLD TO:

printed 06/01/<del>261</del>1-1<del>1:0</del>4AM <del>by Luttie:Boarma</del>n p: <del>936/36</del>

Chemetoo

16400 South Lanthrop Harvey, IL 80426 97_I US10

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	36,302	\$0.31500	\$11,435.13

36,302

TOTAL DUE:

\$11,435.13

TERMS NET 30 DAYS COMMENTS:

ADDROUGH OV.

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



BOL#

CUSTOMER # (\$1545 1378

CONTRACT# **VERBAL** 

INVOICE DATE SHIPPED DATE 3929 **PACKING LIST** 

SOLD TO:

Chemetco 16400 South Lanthrop Harvey, IL 60426

97I0516

ALLOY	DESCRIPTION	NET LBS	PRICE	TRUOMA
8722	2000 SERIES FURNACE SCREENINGS	33,998	\$0.31500	\$10,709.37

33,998

**TOTAL DUE:** 

\$10,709.37

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



# 3010VAI

CUSTOMER # BOL#

CONTRACT#

**VERBAL** 

Chemetoo SOLD TO:

> 16400 South Lanthrop Harvey, IL 60426

INVOICE DATE (9/29/97

SHIPPED DATE

9/23/97

**PACKING LIST** 

3928

97_IOS17

ALLOY	DESCRIPTION	 NET LBS	PRICE	AMOUNT
3538	O.A. 3530 SCRAP	40,122	\$0.46000	\$18,456.12

40,122

TOTAL DUE:

\$18,456.12

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



CUSTOMER# (\$1545

BOL#

SOLD TO:

1388 **VERBAL** 

CONTRACT#

Chemetco

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE (

SHIPPED DATE

10/3/97

PACKING LIST

3940

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	34,568	\$0.31500	\$10,888.92

34,568

TOTAL DUE:

\$10,888.92

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



CUSTOMER# 51545

BOL#

1396

CONTRACT#

**VERBAL** 

SOLD TO:

Chemetco

18400 South Lanthrop Harvey, IL '60426

INVOICE DATE (10/15/97

SHIPPED DATE

10/09/97

PACKING LIST

3947

ALLOY	DESCRIPTIÓN	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	34,180	\$0.31500	\$10,766.70

34,180

TOTAL DUE:

\$10,766.70

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



CUSTOMER # \$1545

BOL#

1395

CONTRACT# **VERBAL**  INVOICE DATE SHIPPED DATE 10/15/97 10/08/97

PACKING LIST

3946

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 341/361.

Chemetoo

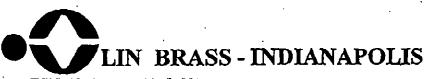
16400 South Lanthrop Harvey, IL 60428

97 Jaso9

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	35,238	\$0.31 <del>50</del> 0	\$11,099.97

35,238

**TOTAL DUE:** 


\$11,099.97

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



printed 96/01/2011 11:04AM by Luttie.Boarman p. 342/361

INVOICE # 971011 CUSTOMER # 91545

BOL# CONTRACT# 1405

T# VERBAL

SOLD TO: Chemetco

16400 South Lanthrop Harvey, IL 60426 SHIPPED DATE 10/21/97
PACKING LIST 3957

9780511

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SCREENINGS	32,304	\$0.31500	\$10,175.76

32,304

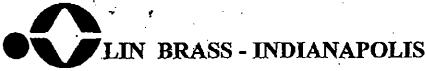
TOTAL DUE:

\$10,175.76

TERMS NET 30 DAYS COMMENTS:

-------

ADDONVED EV


PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

TQ

FINANCIAL



INDIANAPOLIS, INDIANA

INVOICE # 971012

CUSTOMER # \$1545 BOL#

CONTRACT# VERBAL

1408

Chemetco . SOLD TO:

16400 South Lanthrop Harvey, IL 60426

10/21/97 · INVOICE DATE ( SHIPPED DATE 10/17/97 3958 PACKING LIST

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	34,380	\$0.31500	\$10,829.70

34,380

TOTAL DUE:

\$10,829.70

RMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



CUSTOMER # (\$1545

BOL#

1426

CONTRACT# **VERBAL**  INVOICE DATE (10/30/97

SHIPPED DATE

10/27/97

**PACKING LIST** 

3981

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	26,214	\$0.27000	\$7,077.78
8722	6000 SERIES FURNACE SCREENINGS	8,744	\$0.27000	\$2,360.88

34,958

TOTAL DUE:

\$9,438.66

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

BOL#

971025

CUSTOMER # \$1545

CONTRACT#

1430

**VERBAL** 

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey IL 60426

INVOICE DATE 10/30/97

SHIPPED DATE

10/26/97

PACKING LIST

3984

<b>ALLO</b> Ý	DESCRIPTION	NET LBS	. PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	24.000	An areas	40,000,74
9144	ZUVU GERIEG FURNALE SCREENINGS	34.662	\$0.27000	\$0.359.7 <i>A</i>

34,662

TOTAL DUE:

\$9,358.74

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359

INVOICE # 971028

BOL#

CONTRACT#

**VERBAL** 

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE -41/3/97

SHIPPED DATE 10/30/97

PACKING LIST

3991

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	2000 SERIES FURNACE SCREENINGS	32,888	\$0.27000	\$8,879.76

32,888

TOTAL DUE:

\$8,879.76

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE #

BQU#

CONTRACT# VERBAL INVOICE DATE (10/31/97)

SHIPPED DATE

10/29/97

**PACKING LIST** 3988

SOLD TO:

Chemetoo

16400 South Lanthrop

1433

Harvey, IL 60426

ALLOY DESCRIPTION **NET LBS** 

PRICE

**AMOUNT** 

8722

3000 SERIES FURNACE SCREENINGS

33,372

\$0.27000

\$9,010.44

33,372

TOTAL DUE:

\$9,010.44

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 971028 CUSTOMER# (\$1545)

BOL# CONTRACT#

1404 VERBAL INVOICE DATE (10/20/97) SHIPPED DATE

**PACKING LIST** 

3954

SOLD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	3000 SERIES FURNACE SCREENINGS	35,324	\$0.30000	\$10,597.20

35,324

**TOTAL DUE:** 

\$10,597.20

TERMS NET 30 DAYS **COMMENTS:** 

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

FINANCIAL



INVOICE # 971122 CUSTOMER # \$1545 BOL# 1469

CONTRACT# VERBAL

SOLD TO: Chemetoo

16400 South Lanthrop Harvey, IL 60426 INVOICE DATE 12/02/97
SHIPPED DATE 11/25/97
PACKING LIST 4030

97K0524

ALLOY	DESCRIPTION	net LBs	PRICE	AMOUNT
3538	O.A. 3530 SCRAP	36,758	\$0.31000	\$11,394,98

36,758

TOTAL DUE:

\$11,394.98

TERMS NET 30 DAYS COMMENTS:

460001F0 0W

PLEASE REMIT TO:

OLIN BRASS-INDIANAPOLIS

P.O. BOX 92359

DEC-23-1997 08:42 FROM



. 70

INVOICE#

971208

CUSTOMER# \$1545

1484 VERBAL

CONTRACT#

SHIPPED DATE

12/18/97

PACKING LIST

4045

270

SOLD TO:

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

9750507

ALLOY

DESCRIPTION

NET LBS

PRICE

**AMOUNT** 

6428

O.A. 6428 CUTS

5,862

\$0.59150

\$3,467.37

5,862

TOTAL DUE:

\$3,467.37

ERMS NET 30 DAYS

COMMENTS:

APPROVED BY:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



971209

CUSTOMER # \$1545

BOLS

1484

CONTRACT# VERBAL

80LD TO:

Chemetco

16400 South Lanthrop Harvey, IL 60426.

INVOICE DATE

12/18/97

SHIPPED DATE

12/11/97

**PACKING LIST** 

4044

9700508

**ALLOY** DESCRIPTION **NET LBS** 

PRICE

AMOUNT

6558 O.A. 6550 CUTS 34,322

\$0.62400

\$21,416.93

34,322

**TOTAL DUE:** 

\$21,416.93

ERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



971210 CUSTOMER# (\$1545

BOL#

SOLD TO:

CONTRACT#

VERBAL

1483

Chemetoo

16400 South Lanthrop Harvey, IL 60426

INVOICE DATE

SHIPPED DATE PACKING LIST

4043

97.0509

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
8722	6000 SERIES FURNACE SCREENINGS	35,628	\$0.24750	\$8,817.93

35,628

TOTAL DUE:

RMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



CONTRACT#

DEC-23-1997 16:37 FROM

SHIPPED DATE **PACKING LIST** 

INVOICE DATE

TO

(12/23/97) 4047

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 353/361

Chemetoo

16400 South Lanthrop Harvey, IL 60426

7213.07

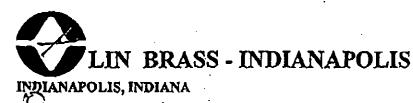
972/05/-

ALLOY	DESCRIPTION	NET LBS	PRICE	-	AMOUNT
6490	O.A. 6490 CUTS	20,228	\$0.65960		\$13,342.39

OLIN ACCOUNTING INDPLS

20,228

**TOTAL DUE:** 


\$13,342.39

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



printed 06/01/2011 11:04AM by Luttie.Boarman p. 354/361

INVOICE # 971214 CUSTOMER # 61545 BOL# 1486

CONTRACT#

1486 7213.05

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426 INVOICE DATE 12/23/97
SHIPPED DATE 12/12/97
PACKING LIST 4048

9780513

ALLOY	DESCRIPTION	NETLBS	PRICE	AMOUNT
6428	O.A. 6420 CUTS	19,318	\$0.59150	\$11,426.60

19,318

TOTAL DUE:

\$11,426.60

SAMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TOP

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359

CHICAGO, IL 60675-2359

TOTAL P A:



INVOICE # 971215 CUSTOMER # \$1545 BOL# 1488 CONTRACT# 7213.01

DEC-23-1997 16:33 FROM

SHIPPED DATE
PACKING LIST

12/23/97 12/12/97 4049

CONTRACT#

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 355/361

Chemetoo

16400 South Lanthrop Harvey, IL 60426 9750514

ALLOY	DESCRIPTION	NET LBS	PRICE		AMOUNT
1458	O.A. 1450 CUTS	8,278	\$0.64350	<u>-</u>	\$5,326.89

DLIN ACCOUNTING INDPLS

8,278

TOTAL DUE:

\$5,326.89

TERMS NET 30 DAYS COMMENTS:

APPROVED BY:

PLEASE REMIT TO:
OLIN BRASS - INDIANAPOLIS
P.O. BOX 92359
CHICAGO, IL 60875-2359



CUSTOMER # (\$1545

BOL#

SOLD TO:

printed 06/01/2011 11:04AM by Luttie.Boarman p. 356/361

1488

7213.05

CONTRACT#

Chemetoo

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE

SHIPPED DATE

12/12/97

PACKING LIST

4050

9720515

ALLOY	DESCRIPTION	 NET LBS	PRICE	AMOUNT
6428	O.A. 6420 CUTS	7,780	\$0.59150	\$4,601.87

7,780

**TOTAL DUE:** 

\$4,601.87

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359



CUSTOMER # (S1545) BOL#

1488

CONTRACT#

SOLD TO:

72130.7

Chemetco 16400 South Lanthrop Harvey, IL 60426

INVOICE DATE

12/23/97

SHIPPED DATE **PACKING LIST** 

4051

9780516

ALLOY	DESCRIPTION	NET LBS	PRICE	THUOMA
6490	O.A. 6468 CUTS	22,128	\$0.65960	\$14,595.63

22,128

**TOTAL DUE:** 

\$14,595.63

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE &

BOL#

CUSTOMER # (\$1545

CONTRACT#

1491

7213.05

Chemetco SOLD TO:

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE (

SHIPPED DATE

12/23/97 12/15/97

**PACKING LIST** 

4055

9720518

ALLOY

DESCRIPTION

**NET LBS** 

PRICE

AMOUNT

6428

O.A. 6420 CUTS

38,452

\$0.59150

· \$22,744,36

38,452

**TOTAL DUE:** 

\$22,744,36

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



CUSTOMER # (\$1545 BOL#

1492

CONTRACT#

SOLD TO:

7213.05

Chemetco

16400 South Lanthrop

Harvey, IL 60426

INVOICE DATE

TO

SHIPPED DATE

**PACKING LIST** 

4056

9720519

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
6428	O.A. 6420 CUTS	13,926	\$0.59150	\$8,237.23

13,926

**TOTAL DUE:** 

\$8,237,23

TERMS NET 30 DAYS

COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE DATE

12/23/97

CUSTOMER# (\$1545 BOL#

1492

SHIPPED DATE

12/15/97

CONTRACT#

7213.01

**PACKING LIST** 

4057

SOLD TO:

Chemetco

16400 South Lanthrop

Harvey, IL 60426

9720520

ALLOY	DESCRIPTION	NET LBS	PRICE	AMOUNT
1458	O.A. 1450 CUTS	13,808	\$0.64350	\$8,885.45

13,808

TOTAL DUE:

\$8,885.45

TERMS NET 30 DAYS COMMENTS:

PLEASE REMIT TO:

**OLIN BRASS - INDIANAPOLIS** 

P.O. BOX 92359



INVOICE # 971222 CUSTOMER # \$1545 BOL# 1492

INVOICE DATE SHIPPED DATE PACKING LIST

12/23/97 12/15/97 4058

CONTRACT#

7213.06

SOLD TO:

Chemetoo

16400 South Lanthrop Harvey, IL 60426

9720521

ALLOY	DESCRIPTION	NET LES	PRICE	THUOMA
6558	O.A. 6550 CUTS	8,684	\$0.62400	\$5,418.82

8,684

TOTAL DUE:

\$5,418,82

TERMS NET 30 DAYS COMMENTS:

APPROVED RY

PLEASE REMIT TO:

OLIN BRASS - INDIANAPOLIS

P.O. BOX 92359